首页> 外文会议>Symposium on Mechanical Properties of Bioinspired and Biological Materials >ATOMISTIC AND CONTINUUM STUDIES OF FLAW TOLERANT NANOSTRUCTURES IN BIOLOGICAL SYSTEMS
【24h】

ATOMISTIC AND CONTINUUM STUDIES OF FLAW TOLERANT NANOSTRUCTURES IN BIOLOGICAL SYSTEMS

机译:生物系统中缺陷纳米结构的原子和连续性研究

获取原文

摘要

Bone-like biological materials have achieved superior mechanical properties through hierarchical composite structures of mineral and protein. Geckos and many insects have evolved hierarchical surface structures to achieve superior adhesion capabilities. What is the underlying principle of achieving superior mechanical properties of materials? Using joint atomistic-continuum modeling, we show that the nanometer scale plays a key role in allowing these biological systems to achieve such properties, and suggest that the principle of flaw tolerance and design for robustness may have had an overarching influence on the evolution of the bulk nanostructure of bone-like materials and the surface nanostructure of gecko-like animal species. We illustrate that if the characteristic dimension of materials is below a critical length scale on the order of several nanometers, Griffith theory of fracture no longer holds. An important consequence of this finding is that materials with such nano-substructures become flaw-tolerant, as the stress concentration at crack tips disappears and failure always occurs at the theoretical strength of materials, regardless of defects. The atomistic simulations complement continuum analysis and reveal a smooth transition between Griffith modes of failure via crack propagation to uniform bond rupture at theoretical strength below a nanometer critical length. This modeling resolves a long-standing paradox of fracture theories, and these results have important consequences for understanding failure of small-scale materials. Additional investigations focus on shape optimization of adhesion systems. We illustrate that optimal adhesion can be achieved when the surface of contact elements assumes an optimal shape. The results suggest that optimal adhesion can be achieved either by length scale reduction, or by optimization of the contact shape. Whereas change in shape does not lead to robustness, reducing the dimension results in robust adhesion devices.
机译:通过矿物质和蛋白质的分层复合结构,骨状生物材料已经实现了优异的机械性能。壁虎和许多昆虫已经进化了层次表面结构,以实现优异的粘附能力。实现材料卓越机械性能的基本原则是什么?使用联合原子 - 连续型建模,我们表明纳米规模在允许这些生物系统实现这些特性方面发挥着关键作用,并表明耐瑕疵和鲁棒性设计的原则可能对其的演变具有总体影响骨状材料的块状纳米结构和壁虎状动物物种的表面纳米结构。我们说明,如果材料的特征尺寸低于几纳米的临界长度,则骨折的Griffith理论不再保持。这种发现的一个重要结果是具有这种纳米结构的材料变得耐缺乏,因为裂缝尖端处的应力浓度消失,并且失效总是发生材料的理论强度,无论缺陷如何。原子模拟补体连续分析并揭示了通过裂纹传播在纳米临界长度低于纳米临界长度的理论强度下均匀粘接破裂的流动性变化的平滑过渡。这种造型解决了骨折理论的长期悖论,这些结果对理解小规模材料的失效具有重要影响。额外的调查专注于粘合系统的形状优化。我们说明当接触元件的表面呈现最佳形状时,可以实现最佳粘合力。结果表明,通过长度降低或通过优化接触形状,可以实现最佳粘合。然而,形状的变化不会导致稳健性,减少尺寸导致鲁棒粘合装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号