首页> 外文学位 >Mechanics of low-dimensional carbon nanostructures: Atomistic, continuum, and multi-scale approaches.
【24h】

Mechanics of low-dimensional carbon nanostructures: Atomistic, continuum, and multi-scale approaches.

机译:低维碳纳米结构的力学:原子学,连续学和多尺度方法。

获取原文
获取原文并翻译 | 示例

摘要

A new multiscale modeling technique called the Consistent Atomic-scale Finite Element (CAFE) method is introduced. Unlike traditional approaches for linking the atomic structure to its equivalent continuum, this method directly connects the atomic degrees of freedom to a reduced set of finite element degrees of freedom without passing through an intermediate homogenized continuum. As a result, there is no need to introduce stress and strain measures at the atomic level. The Tersoff-Brenner interatomic potential is used to calculate the consistent tangent stiffness matrix of the structure. In this finite element formulation, all local and non-local interactions between carbon atoms are taken into account using overlapping finite elements. In addition, a consistent hierarchical finite element modeling technique is developed for adaptively coarsening and refining the mesh over different parts of the model. This process is consistent with the underlying atomic structure and, by refining the mesh to the scale of atomic spacing, molecular dynamic results can be recovered. This method is valid across the scales and can be used to concurrently model atomistic and continuum phenomena so, in contrast with most other multi-scale methods, there is no need to introduce artificial boundaries for coupling atomistic and continuum regions. Effect of the length scale of the nanostructure is also included in the model by building the hierarchy of elements from bottom up using a finite size atom cluster as the building block. To be consistent with the bravais multi-lattice structure of sp2-bonded carbon, two independent displacement fields are used for reducing the order of the model. Sparse structure of the stiffness matrix of these nanostructures is exploited to reduce the memory requirement and to speed up the formation of the system matrices and solution of the equilibrium equations. Applicability of the method is shown with several examples of the nonlinear mechanics of carbon nanotubes and carbon nanocones subject to different loadings and boundary conditions.;This finite element technique is also used to study the natural frequencies of low-dimensional carbon nanostructures and comparing the results with those of a homogenized isotropic continuum shell. Conclusion is that, replacing the atomic lattice with an isotropic continuum shell for a graphene sheet does not significantly affect the vibration frequencies while in the case of carbon nanotubes and carbon nanocones there is a significant difference between the natural frequencies of the atomistic model and its continuum counterpart. In the case of the carbon nanotube, continuum model successfully captures the beam bending vibration modes while overestimating frequencies of the modes in which the cross-section undergoes significant deformation. Furthermore, in the case of carbon nanotubes, the continuum shell exhibits a torsional mode which appears to be an artifact resulting from the small nominal thickness typically used in the continuum shell approximation of these nanostructures. Results of this study indicate that isotropic continuum shell models, while simple and useful in static analysis, cannot accurately predict the vibration frequencies of these nanostructures.;We have studied the bistable nature of single-walled carbon nanotubes by investigating the change in the tube's energy as it is compressed between flat rigid indenters of various widths. Assuming the nanotube deformed uniformly along its length and modeling the cross-section as an inextensible, non-linear beam we found that tubes with a radius greater than 12 A are bistable and that tubes with a radius greater than 25 A have a lower energy in the collapsed state than in the inflated state. The difference in energy between the collapsed and inflated states decreases nearly linearly with increasing tube radius. While the inflated state remains stable for tubes of all diameters, the energy barrier keeping the tube from collapsing approaches zero as the tube radius increases. We also demonstrate why collapse with a wide indenter may be difficult to observe in narrow tubes.;A reduced-order model is developed for the dynamics of the carbon nanotube atomic force microscope probes. Bending behavior of the nanotube probe is modeled using Euler's elastica. A nonlinear moment-curvature relationship is implemeneted to account for the ovalization of the cross section of the nanotube during bending. Van der Waal forces acting between tube and the substrate is integrated over the surface of the tube and used as distributed follower forces acting on the equivalent elastica. Approximating the behavior of the nanotube with an elastica proved to be a very effiecient technique for modeling these nanostructures.
机译:引入了一种新的多尺度建模技术,称为一致性原子尺度有限元(CAFE)方法。与将原子结构连接到其等效连续体的传统方法不同,该方法将原子自由度直接连接到一组减少的有限元素自由度,而无需经过中间的均质连续体。结果,不需要在原子水平上引入应力和应变措施。 Tersoff-Brenner原子间电势用于计算结构的一致切线刚度矩阵。在这种有限元公式中,使用重叠的有限元考虑了碳原子之间的所有局部和非局部相互作用。此外,还开发了一种一致的分层有限元建模技术,用于在模型的不同部分上自适应地粗化和细化网格。此过程与基础原子结构一致,并且通过将网格细化为原子间距的大小,可以恢复分子动力学结果。该方法在各个尺度上都是有效的,可用于同时建模原子和连续体现象,因此,与大多数其他多尺度方法相比,无需引入人工边界来耦合原子和连续体区域。通过使用有限大小的原子簇作为构建模块,从下至上构建元素层次结构,模型中还包括了纳米结构的长度尺度的影响。为了与sp2键合碳的bravais多晶格结构一致,使用两个独立的位移场来简化模型的阶数。利用这些纳米结构的刚度矩阵的稀疏结构来减少内存需求,并加快系统矩阵的形成和平衡方程的求解。列举了几种碳纳米管和碳纳米锥在不同载荷和边界条件下的非线性力学实例,说明了该方法的适用性;该有限元技术还用于研究低维碳纳米结构的固有频率并比较结果与均质各向同性连续壳的结构。结论是用石墨烯片的各向同性连续体壳代替原子晶格不会显着影响振动频率,而在碳纳米管和碳纳米锥的情况下,原子模型的自然频率与其连续体之间存在显着差异对方。在碳纳米管的情况下,连续模型成功捕获了束弯曲振动模式,同时高估了横截面发生明显变形的模式的频率。此外,在碳纳米管的情况下,连续壳表现出扭转模式,这似乎是由通常用于这些纳米结构的连续壳近似的较小标称厚度导致的伪影。这项研究的结果表明,各向同性的连续壳模型虽然简单且在静态分析中有用,但不能准确预测这些纳米结构的振动频率。;我们通过研究管子能量的变化研究了单壁碳纳米管的双稳态性质。因为它被压缩在各种宽度的扁平刚性压头之间。假定纳米管沿其长度均匀变形并将横截面建模为不可延伸的非线性束,我们发现半径大于12 A的管是双稳态的,半径大于25 A的管在较低能量下处于稳态。收缩状态要比充气状态好。塌缩状态和膨胀状态之间的能量差随着管半径的增加而几乎呈线性减小。对于所有直径的管子,充气状态保持稳定时,随着管子半径的增加,阻止管子塌缩的能垒接近零。我们还证明了为什么在窄管中难以观察到带有宽压头的塌陷。;为碳纳米管原子力显微镜探针的动力学建立了降阶模型。纳米管探针的弯曲行为是使用欧拉弹性模型建模的。实现了非线性弯矩-曲率关系,以说明在弯曲过程中纳米管横截面的椭圆化。作用在管和基底之间的范德华力在管的表面上被整合,并用作作用在等效弹性体上的分布从动力。用弹性体近似纳米管的行为被证明是对这些纳米结构进行建模的非常有效的技术。

著录项

  • 作者

    Mahdavi, Arash.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 236 p.
  • 总页数 236
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号