首页> 外文会议>Symposium on Mechanical Properties of Bioinspired and Biological Materials >Computational Mechanics Routes to Explore the Origin of Mechanical Properties in a Biological Nanocomposite: Nacre
【24h】

Computational Mechanics Routes to Explore the Origin of Mechanical Properties in a Biological Nanocomposite: Nacre

机译:计算力学路线探讨生物纳米复合材料中的机械性能起源:珍珠

获取原文

摘要

Nacre, the inner layer of seashells, is a laminated nanocomposite consisting of micron sized pseudo hexagonal aragonitic calcium carbonate platelets with about 20 nanometer thick organic layer sandwiched between the platelets. This nanocomposite has been studied extensively as a model system for the design of new biomimetic nanocomposites. The nano and micro architecture of nacre has many features and nuances, which have been attributed as possible reasons for the exceptional mechanical properties. In our work, we have used computational mechanics routes to model and simulate observed macro response, to quantitatively evaluate the contribution of various components of the nano and micro architecture of nacre to the mechanical properties. We also describe our discovery of platelet interlocks and their impact on the mechanical response of nacre. Our experiments on tensile failure and scanning electron microscopy of nacre specimens, and simulations using finite element modeling, indicate that the interlocks function as a physical restraint against free relative movement of platelets. Hence, these interlocking features need to yield/break before the complete transfer of load can occur to an intervening organic. The observed interlocks play a critical role in the mechanical response of nacre. During failure the features observed in the microstructure of nacre, such as relative rotation between platelet layers, platelet penetration, and other geometrical abnormalities such as an elongated side etc., appear not to be accidents of nature; they seem to exist for a purpose. These abnormalities lead to high toughness and strength, which is necessary for protecting the organism within the seashell.
机译:芽,贝壳内层,是一种层压纳米复合材料,包括微米尺寸的伪六方基石碳酸钙血小物,其中约20纳米厚的有机层夹在血小板之间。该纳米复合材料已被广泛研究作为新型生物摩擦纳米复合材料的模型系统。 NACRE的纳米和微型建筑具有许多特征和细微差别,这归因于出色的机械性能的可能性。在我们的工作中,我们使用计算力学路线来模拟和模拟观察到的宏观响应,以定量评估NACRE纳米和微架构的各种部件的贡献到机械性能。我们还描述了我们对血小板互锁的发现及其对纳加机械反应的影响。我们对使用有限元模拟的褐色试样的拉伸失效和扫描电子显微镜的实验,以及使用有限元建模的模拟,表明互锁功能作为血小板自由运动的物理束缚。因此,这些互锁特征需要在干燥的有机上发生载荷的完全转移之前产生/断裂。观察到的互锁在珍珠土的机械响应中发挥着关键作用。在失败期间,在露珠的微观结构中观察到的特征,例如血小板层,血小板渗透和其他几何异常(如细长侧等的其他几何异常),看起来不成为自然的事故;他们似乎存在目的。这些异常导致高韧性和强度,这对于保护贝壳内的生物是必要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号