【24h】

Analysis of a one-billion atom simulation of work-hardening in ductile materials

机译:延性材料中工作硬化的10亿原子模拟分析

获取原文

摘要

We analyze a large-scale molecular dynamics simulation of work hardening in a ductile model material comprising of 500 million atoms interacting with a. Lennard-Jones pair potential within a classical molecular dynamics scheme. With tensile loading, we observe emission of thousands of dislocations from two sharp cracks. The dislocations interact in a complex way, revealing three fundamental mechanisms of work-hardening. These are (1) dislocation cutting processes, jog formation and generation of point defects; (2) activation of secondary slip systems by cross-slip; and (3) formation of sessile Lomer-Cottrell locks. The dislocations self-organize into a complex sessile defect topology. Our analysis illustrates mechanisms formerly only known from textbooks and observed indirectly in experiment. It is the first time that such a rich set of fundamental phenomena has been seen in a single computer simulation.
机译:我们分析了延性模型材料中的工作硬化的大规模分子动力学模拟,其中包含5百万个原子与a相互作用。 Lennard-Jones对经典分子动力学方案内的潜力。 通过拉伸载荷,我们观察来自两个尖锐裂缝的数千个脱位的排放。 脱位以复杂的方式相互作用,揭示了三种工作 - 硬化的基本机制。 这些是(1)位错切割过程,慢跑形成和点缺陷的产生; (2)通过交叉防滑激活二次滑动系统; (3)形成术栓洛米尔 - 科特尔锁。 脱位自组织成复杂的术语缺陷拓扑。 我们的分析说明了以前仅从教科书中已知并在实验中间接观察的机制。 这是一台计算机模拟中首次出现如此丰富的基本现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号