首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials failure
【24h】

Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials failure

机译:原子可塑性:十亿个原子模拟延性材料破坏的描述和分析

获取原文
获取原文并翻译 | 示例
           

摘要

Large scale atomic simulations are becoming an increasingly important tool in modeling deformation and failure mechanisms of materials. Here we describe and analyze a recent one-billion-atom simulation of ductile materials failure [PNAS 99 (9) (2002) 5783] where the complexity of creation and collective behavior of thousands of dislocations are revealed, for the first time, from atomic to submicron length scales. The amount of information that can be extracted from such large-scale simulations is truly overwhelming, and graphic visualization of dynamic dislocation motion and interactions are breathtaking. We present some of our preliminary analysis of the one-billion-atom simulation which indicates several interesting and unique features characterizing interactions among a large number of dislocations. A sessile defect structure is observed to develop on the time scale of several picoseconds, effectively locking further dislocation motion and causing the material to work harden. We make analysis of the activated slip systems, the dislocation reactions leading to rigid junctions and the formation of sessile defect structure. In order to render the present study more comprehensive to the readers from a continuum plasticity background and stimulate further interests in this area of research, we also include some brief reviews of some of the previous studies as well as commonly used simulation, visualization and analysis techniques on atomistic modeling of dislocation plasticity. Finally, we discuss possible ways to link continuum mechanics theories of plasticity with atomistic simulation results via the dislocation density tensor.
机译:大规模原子模拟正在成为建模材料变形和破坏机理的越来越重要的工具。在这里,我们描述和分析了最近的十亿原子可塑性材料失效模拟[PNAS 99(9)(2002)5783],其中首次揭示了原子错位的产生和集体行为的复杂性。到亚微米长度刻度。可以从这样的大规模模拟中提取的信息量实在令人难以置信,动态位错运动和相互作用的图形可视化令人叹为观止。我们介绍了对十亿原子模拟的一些初步分析,该分析表明了表征许多位错之间相互作用的几个有趣而独特的特征。观察到一种固着的缺陷结构在几皮秒的时间尺度上发展,有效地锁定了进一步的位错运动并导致材料硬化。我们对激活的滑移系统,导致刚性连接的错位反应和固着缺陷结构的形成进行了分析。为了使本研究在连续可塑性背景下对读者更全面,并激发对该领域的进一步兴趣,我们还对一些先前的研究以及常用的模拟,可视化和分析技术进行了简要的评论位错可塑性的原子模型研究。最后,我们讨论了通过位错密度张量将连续体力学理论与原子模拟结果联系起来的可能方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号