首页> 外文会议>International Conference on Microwave and High Frequency Heating >How the Coupling of Microwave and RF Energy in Materials can Affect Solid State Charge and Mass Transport and Result in Unique Processing Effects
【24h】

How the Coupling of Microwave and RF Energy in Materials can Affect Solid State Charge and Mass Transport and Result in Unique Processing Effects

机译:微波和射频能量的耦合如何影响固态充电和质量运输,并导致独特的加工效果

获取原文

摘要

Microwave and RF fields heat materials by inducing motion of charged particles through the action of electric or magnetic forces. Consequently, internal penetration of the fields enables volumetric heating of many materials that are only sur- face-heated in conventional furnaces. This volumetric heating can accelerate en-dothermic reactions that are rate-limited by heat transport from the material's surface in conventional processing. The inverted temperature profiles that result from volumetric heating can provide unique processing effects. Conventional heating can result in the surface reaction completing before the interior is fully reacted. Surface pores may close prematurely, preventing mass transport of gas reactants to the center needed to complete the reaction of the interior. With inverted temperature profiles, microwave-heated materials can allow the reactant gases to permeate the specimen and diffuse to the hot center until it is fully reacted. In addition to heating, electromagnetic fields can influence reactions through direct modulation of particle motion, and, in some cases, modification of mass transport. The strongest evidence includes experiments where microwave- or RF-heated data can be compared with conventionally-heated data without reliance on an exact knowledge of the internal temperature. Several examples of such data exist, including results of a comprehensive study revealing a microwave-field-induced driving force that enhances ionic transport in materials. New results indicating microwave- and RF-field enhancements of annealing kinetics in B-doped Si are under investigation to advance scientific understanding and for their application value to advanced integrated circuit manufacture.
机译:微波和RF场通过诱导带电粒子通过电力或磁力的作用的运动来热材料。因此,该领域的内部渗透使得许多材料的体积加热仅在传统炉中加热的许多材料。该体积加热可以加速通过在常规加工中由材料表面的热传输速率限制的浓缩热反应。由体积加热产生的倒温度曲线可以提供独特的处理效果。常规加热可导致在内部完全反应之前完成的表面反应。表面孔可能过早接近,防止将气体反应物的质量传输到所需的内部反应所需的中心。具有倒置温度型材,微波炉加热的材料可以允许反应气体渗透样品并扩散到热中心,直至其完全反应。除了加热外,电磁场还能通过直接调制粒子运动来影响反应,并且在某些情况下,改变大规模运输。最强的证据包括实验,其中可以将微波炉或RF加热数据与常规加热数据进行比较,而无需依赖于内部温度的确切知识。存在这些数据的若干例子,包括综合研究的结果,揭示了微波场诱导的驱动力,该驱动力增强了材料的离子输送。新的结果表明B-Doped Si中的退火动力学的微波和RF场增强是在调查的,以推进科学的理解,并为其应用价值提升到先进的集成电路制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号