【24h】

Plasma-based thrusters: Electrostatic and electromagnetic coupling

机译:基于等离子体的推进器:静电和电磁耦合

获取原文

摘要

Summary form only given. Electric propulsion for spacecraft offers many advantages compared to other traditional counterparts such as chemical propulsion. Plasma-based propulsion devices can be useful for satellites for the purpose of station-keeping, attitude control, formation-flying and possibly end-of-life de-orbiting for space debris mitigation. There is a growing interest to have a propulsion system for small satellites (microsatellites and nanosatellites) as their mission capabilities can drastically be increased. Satellites with masses of a few kilograms approximately require only tens of micronewtons of thrust for station-keeping and attitude control, implying that electric propulsion could be an excellent candidate. There are three main types of electric propulsion: electrostatic, electromagnetic and electrothermal, each with its own advantages and characteristics [1,2] depending on the application and space mission. In the present work, the different types of thrusters will be presented with an aim to design a hybrid thruster coupling the advantages of the three modes of electric thrusters. The simulations will detail the plasma evolution within the thrusters and help optimize the governing parameters such as electric and magnetic field profiles.
机译:仅给出摘要表格。与化学推进等其他传统对应物相比,用于航天器的电动推进提供了许多优点。基于等离子体的推进装置可用于卫星,用于驻扎在驻扎,姿态控制,形成 - 飞行,可能是寿命结束的空间碎片缓解。由于他们的使命能力可以大大增加,对小型卫星(微卫星和纳米燕肽的推进系统产生了越来越多的兴趣。卫星具有几千克的群众大致只需要几十微米的用于站 - 保存和姿态控制的推力,这意味着电动推进可能是一个优秀的候选人。电动推进有三种主要类型:静电,电磁和电热,各自具有其自身的优点和特点[1,2],取决于应用和空间任务。在目前的工作中,将提出不同类型的推进器,目的是设计混合推进器耦合电推进器三种模式的优点。仿真将详细介绍推进器内的等离子体进化,并有助于优化电动和磁场型材等控制参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号