首页> 外文会议>Conference in Series of the European Fuel Cell Forum in Lucerne;European sofc and soe forum >Testing novel nickel and cobalt infiltrated STN anodes for carbon tolerance using in situ Raman spectroscopy and electrochemical impedance spectroscopy
【24h】

Testing novel nickel and cobalt infiltrated STN anodes for carbon tolerance using in situ Raman spectroscopy and electrochemical impedance spectroscopy

机译:使用原位拉曼光谱和电化学阻抗光谱测试新型镍和钴渗透的STN阳极用于碳耐受性

获取原文

摘要

Conventional SOFCs use Nickel Yttria-doped Zirconia cermet (Ni-YSZ) anodes because they are effective, durable and inexpensive electrocatalysts. However, these same materials are also susceptible to degradation due to coking from carbon accumulation when operating with carbon containing fuels. Raman spectroscopy is a powerful tool for investigating surface chemistry and, when combined with electrochemical impedance spectroscopy (EIS) under in situ conditions, the technique can report the real-time material composition of the electrode during the EIS measurements. Studies described in this work used in situ Raman spectroscopy and electrochemical impedance spectroscopy to examine the carbon tolerance of novel ceramic anode materials comprised of niobium doped strontium titanate (STN) infiltrated with either nickel or cobalt nanoparticles. The susceptibility of these electrodes to coking were tested with CO/CO2 mixtures and pure methane at 850?C. Data show that nickel infiltrated STN electrodes are still prone to coking from methane. In contrast to STN electrodes infiltrated with nickel, cobalt infiltrated STN electrodes showed no susceptibility to carbon deposition within the detection limit of the Raman measurements during methane exposure. Neither anode showed evidence of coking from the CO/CO2 mixtures. Coking correlated closely with changes in EIS measurements, with the most noticeable effects appearing in the low frequency part of the spectrum. Ex situ SEM analysis of samples before and after the usage illustrated how operational conditions influence electrode microstructure leading to the agglomeration of the nanoparticles.
机译:传统的SOFC使用镍钇掺杂的氧化锆金属陶瓷(Ni-YSZ)阳极,因为它们是有效的,耐用且廉价的电催化剂。然而,这些相同的材料也易于在用含碳燃料操作时从碳积累的焦炭中焦化而易受降解。拉曼光谱是一种用于研究表面化学的强大工具,并且当与在原位条件下的电化学阻抗谱(EIS)结合时,该技术可以在EIS测量期间报告电极的实时材料组成。在本作原位拉曼光谱和电化学阻抗光谱中描述的研究,以检查用镍或钴纳米粒子浸润的铌掺杂钛酸铌锶(STN)组成的新型陶瓷阳极材料的碳耐受性。用Co / CO 2混合物和纯甲烷在850℃下测试这些电极与焦化的易感性。数据表明,镀镍的STN电极仍然容易从甲烷焦化。与用镍渗透的STN电极对比,钴渗透的STN电极对甲烷暴露期间拉曼测量的检测极限内没有易受碳沉积的敏感性。两种阳极都没有显示出来自CO / CO2混合物的焦化的证据。 COKING与EIS测量的变化密切相关,具有最明显的效果,在光谱的低频部分中出现。在使用前后的样品分析示例说明了操作条件如何影响电极微观结构导致纳米颗粒附聚的样品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号