首页> 外文会议>International Conference on Noise and Vibration Engineering;International Conference on Uncertainty in Structural Dynamics >Fault detection system using acoustic particle velocity in noisy environments based on kurtosis
【24h】

Fault detection system using acoustic particle velocity in noisy environments based on kurtosis

机译:基于Kurtosis的嘈杂环境中使用声学粒子速度的故障检测系统

获取原文

摘要

The assessment of noise and vibration is fundamentally important for the fault diagnosis of machinery. Microphone-based solutions offer limited performance due to the presence of high levels of background noise in most industrial measurement scenarios. Furthermore, the use of accelerometers is not viable for applications where it is not possible to attach a sensor to the object's surface. Laser vibrometry or other alternative non-contact measurement methods are not recommended when an affordable, flexible solution is required. In contrast, acoustic particle velocity sensors offer key advantages in such scenarios. They provide a better signal to noise ratio when the measurements are performed close to the radiating surface, due to the vector nature of particle velocity, intrinsic dependency upon surface displacement and sensor directivity. The background noise contribution can be minimized by measuring as close as possible to the target sound source. In such cases, the measured acoustic particle velocity becomes proportional to the surface vibration. This paper introduces the use of particle velocity transducers for fault detection moving and rotating parts in a noisy environment. The detection algorithm relies on the assumption that a high proportion of faults are impulsive sounds or clicks. An algorithm based on the Mel-Frequency Cepstral Coefficients (MFCC) and Kurtosis features extracted from the vibration signal, for detection and classification of the impulsive noise, is proposed. The classification is performed using Gaussian Mixture Models (GMM) and assumes that the vibration signal can be masked by cyclostationary noise. In addition, autoregressive models are used to increase overall performance. The experimental results obtained show that the detection system can successfully operate under weak signal to noise ratios and in the presence of background noise. This provides key evidence for the potential of particle velocity-based solutions for fault detection in end of line control applications.
机译:噪音和振动的评估对于机械的故障诊断是至关重要的。基于麦克风的解决方案由于大多数工业测量场景中存在高水平的背景噪声而提供有限的性能。此外,对于不可能将传感器附接到物体表面的应用,加速度计的使用不可行。当需要实惠的柔性溶液时,不建议使用激光振动器或其他替代的非接触式测量方法。相反,声学粒子速度传感器在这种情况下提供关键优势。当靠近辐射表面的粒径靠近辐射表面时,它们提供更好的信噪比,因为粒子速度的载体性质,表面位移和传感器方向性的固有依赖性。通过测量尽可能靠近目标声源来最小化背景噪声贡献。在这种情况下,测量的声学颗粒速度变得与表面振动成比例。本文介绍了粒子速度传感器在嘈杂的环境中使用粒子速度传感器进行故障检测和旋转部件。检测算法依赖于假设高比例的故障是脉冲的声音或点击。提出了一种基于振动信号提取的熔融频率谱系数(MFCC)和峰值特征的算法,用于检测和分类脉冲噪声。使用高斯混合模型(GMM)进行分类,并假设振动信号可以通过睫状噪声掩蔽。此外,自动增加模型用于提高整体性能。获得的实验结果表明,检测系统可以在弱信号下成功地运行到噪声比和在背景噪声存在下。这为线路控制应用结束时的故障检测潜在的基于粒子速度的解决方案提供了关键证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号