首页> 外文会议>International Conference on Microelectronics, Signals and Systems >Design and Simulation of Low Power Flip Flop in Nanometer Regime
【24h】

Design and Simulation of Low Power Flip Flop in Nanometer Regime

机译:纳米制度低功率触发器的设计与仿真

获取原文

摘要

Present digital circuits demanded for low power consumption with high packaging density. Now a days scaling of MOSFET devices are goes on increasing, which causes undesirable Short Channel Effects on the device parameters, it may leads to leakage current and thereby leakage power. Current studies shows that leakage power contributes almost 40 % of the total power consumption. Hence by reducing the leakage current we can obtain a low power consumption for digital circuits in nanometer regime, but reduction in leakage power with high packaging density is the most challenging part of today's VLSI design. In delay flip flop the storing of data get restricted due to leakage current which can limit flip flop from performing its operation. In this paper a CMOS Single Edge Triggered 5T Delay flip flop design with leakage reduction technique is proposed. The proposed design had several advantages in comparison with the conventional D FF in terms of reduced transistors count, decreased leakage current, etc. Then for better power reduction considered the Single Edge Triggered 5T DFF design using Self controllable Voltage Level (SVL) Technique. For further significant power reduction Body Bias technique is applied to the proposed design. The result shows a tremendous reduction in leakage power compared to the conventional 9T DFF. The design and simulations were done in 28nm technology LTspice tool.
机译:目前数字电路要求具有高包装密度的低功耗。现在,MOSFET器件的日子缩放正在增加,这导致对器件参数产生不期望的短信道效应,它可能导致漏电流并从而导致漏功率。目前的研究表明,泄漏功率有助于总功耗的近40%。因此,通过减少漏电流,我们可以获得纳米制度中的数字电路的低功耗,但泄漏功率具有高包装密度是当今VLSI设计中最具挑战性的部分。在延迟触发器中,数据存储由于泄漏电流而受到限制,这可以限制触发器从执行其操作。在本文中,提出了一种CMOS单边缘触发5T延迟触发器设计,具有泄漏减少技术。该设计与传统的D FF在减小的晶体管计数,漏电流降低等方面进行了几个优点,然后用于使用自控电压电平(SVL)技术考虑单个边缘触发5T DFF设计的更好的功耗。为了进一步显着的功率降低体偏压技术应用于所提出的设计。与传统的9T DFF相比,结果表明泄漏功率的巨大降低。在28nm技术LTSPICE工具中进行了设计和仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号