首页> 外文会议>IAHR World Congress >INVESTIGATION OF THE MULTI-SCALE INTERACTIONS BETWEEN AN OFFSHORE WIND TURBINE WAKE AND THE OCEAN-SEDIMENT DYNAMICS IN A INDEALIZED FRAMEWORK
【24h】

INVESTIGATION OF THE MULTI-SCALE INTERACTIONS BETWEEN AN OFFSHORE WIND TURBINE WAKE AND THE OCEAN-SEDIMENT DYNAMICS IN A INDEALIZED FRAMEWORK

机译:近海风力涡轮机唤醒与近海框架沉积物动力学多规模相互作用的研究

获取原文

摘要

A coupled two dimensional idealized numerical model of the ocean and sediment layers, forced by an offshore wind turbine wake is used to investigate the complex interactions between the wake, the ocean and the sediment layers, together with the retroaction on the wind energy. Results show that the turbine wake has an impact on both, the ocean and the sediment layers. The turbine wake impacts the ocean surface and generates instabilities or vortex streets for some parameter values. Shallow ocean layers (typically below 15m) are laminar. When water depth is higher, large scale instabilities are generated, leading to a turbulent dynamic in the ocean layer. The size of the generated vortices in the ocean increases with water depth and decreases with the quadratic-law bottom friction coefficient. Considering the morphodynamics three cases are observed, depending on whether the ocean dynamics is laminar (i), has a localized (ii) or domain wide (iii) turbulent behavior. In the first case, changes in seabed elevation are around a few millimeters per month. Results are similar for the localized turbulence case with small spatial variations. For the domain wide turbulence case (iii), instantaneous seabed changes are of the order of a few millimeters per month, whereas the transport averaged over several days decreases to a few tenths of millimeter per month. This behavior is easily explained by the oscillating local velocity which transports sediments back and forth. The above emphasizes that the water depth is a key parameter for the coupled atmosphere-ocean-sediment system around wind turbines. Furthermore, considering the ocean velocity in the atmospheric forcing at the ocean surface leads to a decrease of 4 % of the power lost by friction at the atmosphere-ocean interface. Ocean dynamics could thus have a non-negligible feedback on the wind power available for the turbines and its variability.
机译:通过海上风力涡轮机唤醒强制的海洋和沉积物层的耦合二维理想数值模型,用于研究唤醒,海洋和沉积物层之间的复杂相互作用,以及风能的逆向。结果表明,涡轮机唤醒对两者,海洋和沉积物层产生了影响。涡轮机唤醒会影响海面,为某些参数值产生不稳定性或涡旋街道。浅海边(通常低于15米)是层层。当水深较高时,产生大规模的不稳定性,导致海洋层中湍流动态。海洋中产生的涡流的大小随着水深而增加,并随着二次法律底部摩擦系数减少。考虑到形态学性三种情况,根据海洋动力学是层流(I),具有局部(II)或域宽(III)湍流行为。在第一种情况下,海底海拔的变化每月大约几毫米。结果类似于具有小空间变化的局部湍流案例。对于域宽湍流案例(III),瞬时海底变化每月几毫米的速度为几毫米,而在每月几天的运输减少到每月十分之几毫米。通过振荡局部速度来易于解释这种行为,该局部速度来回传输沉积物。以上强调水深是风力涡轮机耦合大气沉积物系统的关键参数。此外,考虑到海洋表面的大气强迫海洋速度导致大气 - 海洋界面摩擦损失的4%的减少。因此,海洋动力可以对涡轮机的风电及其可变性具有不可忽略的反馈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号