首页> 外文会议>International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation >Modeling and analysis the effect of orifice area variation to the dynamic response of hydro electro mechanic shock absorber (HEMS A)-double cylinder
【24h】

Modeling and analysis the effect of orifice area variation to the dynamic response of hydro electro mechanic shock absorber (HEMS A)-double cylinder

机译:孔口区域变化对水电机减震器动力响应的建模与分析(下摆A) - 双缸

获取原文

摘要

Based on research, only 10% to 16% of the fuel energy used in order to move a car. It is caused by wasted residual energy engine, distributed in a form of heat energy on friction of the transmission system, braking and vibration of suspension system. One of the ways to increase energy efficiency of a car is to use the movement of suspension of the car using Hydraulic RSA (Regenerative Shock Absorber). In this final assignment will be discussed about modelling and analysis the effect of orifice area variation to the dynamic response of Hydraulic Regenerative Shock Absorber-Double Cylinder in quarter car. Inside the hydraulic system, there are 4 points of orifice. The analysis conducted with varying the diameter of orifice on point 1, the sizes are 2, 4, 6 mm and on point 2, 3 and 4 which the size was equalized 6 mm. After that, it was taken the highest value of the damper from one of the variation of orifice and tested in quarter car with varying the input as velocity of 20 km/hour, 40 km/hour and 60 km/hour for sinusoidal input and gamma = 1 for bump input. Then comparing the dynamic response of Quarter Car of HEMSA with Conventional Quarter Car with C = 20000 N. From the simulation result, it was obtained that there is an effect of orifice area variation, which is on variation 1 with 2 mm for orifice diameter. The HEMSA system generates damping force for 5,753 N and with the existence of orifice area variation doesn't affect the amount of electricity response from generator which is when compression can generate current of 3.607 A, voltage of 17.58 V and power of 63.44 W. The maximum value of transmissibility on HEMSA Quarter Car is 1.28 with velocity of 40 km/hour and on Conventional Quarter Car is 1.92 with velocity of 50 km/hour. And when velocity greater or equal to 60 km/hour, HEMSA Quarter Car can generate maximum power for 100 km/hour. If compared to Conventional Quarter Car, the HEMSA Quarter Car will be more efficient when it is used on velocity greater or equal to 80 km/hour, because the difference of transmissibility that was generated from Conventional Quarter Car with HEMSA Quarter Car on that velocity is 0.14 and in that velocity the HEMSA Quarter Car has generated maximum power.
机译:基于研究,仅使用10 %到16 %以移动汽车的燃料能量。它是由浪费的剩余能量发动机引起的,以传动系统的传动系统的摩擦,悬架系统的制动和振动分布在热能的形式上。提高汽车能量效率的方法之一是使用液压RSA(再生减震器)悬架的悬架运动。在该最终任务中,将讨论关于建模和分析孔口区域变化对四分之一车液压再生减震器双缸动态响应的影响。在液压系统内部,有4个孔口。用不同于点1的孔口的直径进行的分析,尺寸为2,4,6mm和在尺寸为2,3和4的位置,尺寸为6mm。之后,将阻尼器的最高值从孔口的一个变化中进行了最高值,并在四分之一的汽车中测试,随着20公里/小时,40 km /小时,40 km /小时和60 km /小时的速度而变化为肠道输入和伽马= 1用于凹凸输入。然后将Hemsa的四分之一辆汽车与常规四分之一轿厢的动态响应进行比较。从仿真结果获得,孔口区域变化的效果是孔口区域的效果,这是孔口直径的2mm的变化1。 Hemsa系统产生5,753 n的阻尼力,并且孔口区域的存在不会影响发电机的电力响应量,这是压缩时的电流为3.607a,电压为17.58 V和63.44W的功率。 Hemsa Quarter Car上的变速能量的最大值为1.28,速度为40 km /小时,常规四分之一车辆为1.92,速度为50公里/小时。当速度大于或等于60 km /小时时,Hemsa四分之一车可以产生100公里/小时的最大功率。如果与传统的四分之一车相比,萱草季度汽车将在速度大于或等于80公里/小时时更有效,因为从传统四分之一汽车与HEMSA四分之一车辆上的传感器产生的传动率差异是0.14和在那种速度下,Hemsa Quarter汽车产生了最大功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号