首页> 外文会议>ISPRS Technical Commission I Symposium >FEASILITY STUDY OF USING THE ROBOEARTH CLOUD ENGINE FOR RAPID MAPPING AND TRACKING WITH SMALL UNMANNED AERIAL SYSTEMS
【24h】

FEASILITY STUDY OF USING THE ROBOEARTH CLOUD ENGINE FOR RAPID MAPPING AND TRACKING WITH SMALL UNMANNED AERIAL SYSTEMS

机译:使用机器人地球云引擎进行快速映射和追踪小型空中系统的可行性研究

获取原文

摘要

This paper presents the ongoing development of a small unmanned aerial mapping system (sUAMS) that in the future will track its trajectory and perform 3D mapping in near-real time. As both mapping and tracking algorithms require powerful computational capabilities and large data storage facilities, we propose to use the RoboEarth Cloud Engine (RCE) to offload heavy computation and store data to secure computing environments in the cloud. While the RCE's capabilities have been demonstrated with terrestrial robots in indoor environments, this paper explores the feasibility of using the RCE in mapping and tracking applications in outdoor environments by small UAMS. The experiments presented in this work assess the data processing strategies and evaluate the attainable tracking and mapping accuracies using the data obtained by the sUAMS. Testing was performed with an Aeryon Scout quadcopter. It flew over York University, up to approximately 40 metres above the ground. The quadcopter was equipped with a single-frequency GPS receiver providing positioning to about 3 meter accuracies, an AHRS (Attitude and Heading Reference System) estimating the attitude to about 3 degrees, and an FPV (First Person Viewing) camera. Video images captured from the onboard camera were processed using VisualSFM and SURE, which are being reformed as an Application-as-a-Service via the RCE. The 3D virtual building model of York University was used as a known environment to georeference the point cloud generated from the sUAMS' sensor data. The estimated position and orientation parameters of the video camera show increases in accuracy when compared to the sUAMS' autopilot solution, derived from the onboard GPS and AHRS. The paper presents the proposed approach and the results, along with their accuracies.
机译:本文提出了一个小型无人机映射系统(SUAMS)的持续发展,将来会跟踪其轨迹并在近实时进行3D映射。由于映射和跟踪算法都需要强大的计算能力和大数据存储设施,我们建议使用Roboearth Cloud Engine(RCE)来卸载重计算并存储数据以确保云中的计算环境。虽然RCE的功能已经在室内环境中进行了地带机器人,但本文探讨了使用小UMS在室外环境中使用RCE在映射和跟踪应用中的可行性。本工作中提出的实验评估了数据处理策略,并使用Suams获得的数据评估可达到的跟踪和映射精度。用Aeryon Scout Quadcopter进行测试。它飞过约克大学,高达地面大约40米。 Quadcopter配备了单频GPS接收器,提供大约3米的精度,AHRS(姿态和前置参考系统)估计到大约3度的AHRS(姿态和标题),以及FPV(第一人称观察)相机。使用VisualSFM从板载摄像机捕获的视频图像并确定,该图像通过RCE将其作为应用程序作为服务进行重整为应用程序。约克大学的3D虚拟建筑模型被用作从Suams传感器数据生成的点云的地震引变的已知环境。与Suam的自动驾驶液溶液相比,视频摄像机显示的估计位置和方向参数的准确性增加,从而源自车载GPS和AHRS。本文提出了建议的方法和结果,以及它们的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号