首页> 外文会议>ASME Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation >COMPUTATIONAL GROWTH AND REMODELING MODEL FOR EVOLVING TISSUE ENGINEERED VASCULAR GRAFTS IN THE VENOUS CIRCULATION
【24h】

COMPUTATIONAL GROWTH AND REMODELING MODEL FOR EVOLVING TISSUE ENGINEERED VASCULAR GRAFTS IN THE VENOUS CIRCULATION

机译:用于演化组织工程血管移植物在静脉循环中的计算生长和重塑模型

获取原文

摘要

The field of vascular tissue engineering continues to advance rapidly, yet there is a pressing need to understand better the time course of polymer degradation and the sequence of cell-mediated matrix deposition and organization. Mounting evidence suggests that cells respond to mechanical perturbations through a process of growth and remodeling (G&R) to establish, maintain, and restore a preferred state of homeostatic stress. Previous computational models utilizing G&R approaches have captured arterial responses to diverse changes in mechanical loading [1, 8, 9]. Recently, a G&R framework was also introduced to account for the kinetics of polymer degradation as well as synthesis and degradation of neotissue constituents [5]. Niklason et al. demonstrated that models of G&R can predict both evolving tissue composition and mechanical behavior after extended periods of in vitro culture of polymer-based tissue-engineered vascular grafts (TEVGs), thus providing insights into the timecourse of neotissue formation and polymer removal. Moreover, they suggest that models of G&R can be powerful tools for the future refinement and optimization of scaffold designs. Nevertheless, such computational models have not yet been developed for examining the formation of neotissue following the implantation of a polymeric TEVG in vivo. Previously, Roh et al. [6] demonstrated the potential of TEVGs composed of nonwoven sheets of polyglycolic acid sealed with a copolymer of poly-L-lactide and -ε-caprolactone PGA/P(CL/LA) for high flow, low pressure applications. Follow up studies investigating the formation of neotissue suggested that the TEVGs transform into functional neotissues via an inflammatory-mediated process of vascular remodeling [2,7]. A theoretical framework to account for both stress- and inflammation-mediated G&R has not yet been developed. Finally, a recent study characterized the biomechanical properties of the degrading PGA-P(CL/LA) scaffold and evolving neotissue composite TEVG in the venous circulation using a murine model [4].
机译:血管组织工程领域继续迅速推进,但是需要迫切需要了解聚合物降解的时间过程和细胞介导的基质沉积和组织的序列。安装证据表明,细胞通过生长和改造(G&R)的过程来响应机械扰动,以建立,维持和恢复稳态应激的优选状态。利用G&R方法的先前计算模型使动脉响应捕获了对机械加载的不同变化[1,8,9]。最近,还介绍了G&R框架以考虑聚合物降解的动力学以及新药成分的合成和降解[5]。 Niklason等人。证明G&R的模型可以预测聚合物基组织工程血管移植物(TEVGS)的延长时间后的演化组织组成和机械行为,从而提供了进入新发现形成和聚合物去除的时间表。此外,他们建议G&R的型号可以是未来改进和脚手架设计优化的强大工具。然而,尚未开发出这种计算模型用于检查在体内聚合物Tevg的聚合物Tevg后的新发现的形成。以前,Roh等人。 [6]证明了TEVGS由具有用于高流量,低压应用的聚-1-丙交酯和-ε-己内酯PGA / P(Cl / La)的共聚物密封的聚乙醇酸的非织造片组成的电位。追随研究调查新发现的形成表明,TEVGS通过炎症介导的血管重塑过程转化为功能性新患者[2,7]。尚未开发出用于胁迫和炎症介导的G&R的理论框架。最后,最近的研究表征了使用鼠模型的静脉循环中的降解PGA-P(Cl / La)支架的生物力学性质[4]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号