首页> 外文会议>AIAA Propulsin and Energy Forum;Conference on Electric Aircraft Technologies >Battery Evaluation Profiles for X-57 and Future Urban Electric Aircraft
【24h】

Battery Evaluation Profiles for X-57 and Future Urban Electric Aircraft

机译:X-57和未来城市电气飞机的电池评估曲线

获取原文

摘要

Battery energy density is one of the most critical design parameters for sizing all-electric aircraft, but it's easily overestimated. Establishing the effective, usable energy density is confused by varying degrees of margin needed to account for structural and thermal management between different cell chemistry and pack designs. A better methodology is needed to fairly compare emerging battery technologies for electric aircraft. Currently, there is a loss of critical information when vehicle trade studies are performed using "nominal" published cell-level performance metrics. Aircraft power demands rarely match these nominal power profiles, and aircraft designers lack the ability to accurately simulate the battery performance and temperature off-nominally unless the battery chemistry is well established. Conversely, battery suppliers are unable to publish more realistic performance metrics due to a lack of generalized reference cases. This can lead to poor assumptions. For example, aircraft studies may assume a fixed discharge efficiency of a battery, when in reality the usable energy in a pack is dependent on the power and thermal profile. Information needed to properly assess weight penalties for thermal management is also typically poorly characterized when assessing candidate batteries. This paper serves to better inform battery development, and, similarly, provide aircraft designers with more realistic assumptions for applying knockdown margins in their designs. Detailed power and thermal performance estimates are described, which also provide a starting point for sizing power and thermal budgets using experimentally derived battery models. Results show that the average X-57 aircraft battery-to-shaft efficiency is 77.3% for a particular optimized mission. Considering a 25% reserve on the battery capacity, only close to half of the original 55.3kWh 'nominal' pack energy can be converted to useful work during a mission. Further estimates on a clean-sheet quad-rotor optimization show an average 82.7% battery-to-shaft efficiency, using 98% peak efficiency inverters and 97.4% peak efficiency motors. Although higher battery efficiencies are possible using larger packs, the resulting weight penalty negates improvement in vehicle performance. These trade-offs and resulting power profiles are provided as a starting point to better assess future battery designs.
机译:电池能量密度是全电机尺寸最关键的设计参数之一,但它很容易高估。通过不同细胞化学和包装设计之间的结构和热管理所需的不同程度来建立有效的可用能量密度。需要更好的方法来公平地比较电气飞机的新兴电池技术。目前,当使用“名义”公布的细胞级性能指标进行车辆贸易研究时,存在关键信息。飞机电源需求很少符合这些标称电源配置文件,而飞机设计人员缺乏能力准确地模拟电池性能和最终温度的能力,除非电池化学完善。相反,由于缺乏广义参考案例,电池供应商无法发布更现实的性能指标。这可能导致假设差。例如,飞机研究可以假设电池的固定放电效率,当实际上,包装中的可用能量取决于电力和热曲线。在评估候选电池时,妥善评估热管理权重惩罚所需的信息也通常表现不佳。本文有助于更好地通知电池开发,同样为飞机设计人员提供更现实的假设,以应用于其设计中的击倒边距。描述了详细的功率和热性能估计,其还提供了使用实验导出的电池模型的尺寸功率和热预算的起点。结果表明,特定优化任务的平均X-57飞机电池到轴效率为77.3%。考虑到电池容量的25%储备,仅接近原稿55.3kWh'标称包装能量的一半,可以在任务期间转换为有用的工作。进一步估计清洁纸张四转子优化,使用98%峰值效率逆变器和97.4%的峰值效率电动机显示平均82.7%的电池到轴效率。虽然使用较大的包装可以获得更高的电池效率,但得到的重量罚款否定了车辆性能的改善。这些权衡和产生的电力配置文件作为起点,以更好地评估未来的电池设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号