首页> 外文会议>ASME Pressure Vessels amp;amp;amp; Piping Conference >TECHNICAL BASIS FOR MASTER CURVE FOR FATIGUE CRACK GROWTH OF FERRITIC STEELS IN HIGH-PRESSURE GASEOUS HYDROGEN IN ASME SECTION Ⅷ-3 CODE
【24h】

TECHNICAL BASIS FOR MASTER CURVE FOR FATIGUE CRACK GROWTH OF FERRITIC STEELS IN HIGH-PRESSURE GASEOUS HYDROGEN IN ASME SECTION Ⅷ-3 CODE

机译:ASMEⅣ段高压气态氢气疲劳钢疲劳裂纹生长的疲劳曲线曲线技术基础

获取原文

摘要

The design of pressure vessels for high-pressure gaseous hydrogen service per ASME Boiler and Pressure Vessel Code Section Ⅷ Division 3 requires measurement of fatigue crack growth rates in situ in gaseous hydrogen at the design pressure. These measurements are challenging and only a few laboratories in the world are equipped to make these measurements, especially in gaseous hydrogen at pressure in excess of 100 MPa. However, sufficient data is now available to show that common pressure vessel steels (e.g., SA-372 and SA-723) show similar fatigue crack growth rates when the maximum applied stress intensity factor is significantly less than the elastic-plastic fracture toughness. Indeed, the measured rates are sufficiently consistent that a master curve for fatigue crack growth in gaseous hydrogen can be established for steels with tensile strength less than 915 MPa. In this overview, published reports of fatigue crack growth rate data in gaseous hydrogen are reviewed. These data are used to formulate a two-part master curve for fatigue crack growth in high-pressure (106 MPa) gaseous hydrogen, following the classic power-law formulation for fatigue crack growth and a term that accounts for the loading ratio (R). The bounds on applicability of the master curve are discussed, including the relationship between hydrogen-assisted fracture and tensile strength of these steels. These data have been used in developing ASME Ⅷ-3 Code Case 2938. Additionally, a phenomenological term for pressure can be added to the master curve and it is shown that the same master curve formulation captures the behavior of pressure vessel and pipeline steels at significantly lower pressure.
机译:每个ASME锅炉和压力容器代码部分的高压气态氢气服务的压力容器的设计ⅷ师3在设计压力下测量气态氢原位原位疲劳裂纹生长速率。这些测量有挑战性,并且世界上只有少数实验室都配备了这些测量,尤其是在压力超过100MPa的压力下的气态氢气。然而,现在可以提供足够的数据来表明当最大施加的应力强度因子显着小于弹性塑性断裂韧性时,常见的压力容器钢(例如,SA-372和SA-723)显示出类似的疲劳裂纹生长速率。实际上,测量的速率足够一致,即可以为气态氢气中的疲劳裂纹生长的主曲线用于钢的钢,其拉伸强度小于915MPa。在概述中,综述了发表的疲劳裂纹裂纹生长速率数据的报道。这些数据用于在经典的动力法制剂之后用于疲劳裂纹生长的经典电力 - 氢化合物的高压(106MPa)气态氢气中的疲劳裂纹生长的两部分主曲线,涉及负载率(R)的术语。讨论了主曲线适用性的界限,包括这些钢的氢辅助断裂和拉伸强度之间的关系。这些数据已用于开发ASMEⅷ-3代码案件2938.此外,可以将用于压力的现象学术语添加到主曲线上,并且示出了相同的主曲线制剂在显着的情况下捕获压力容器和管道钢的行为较低的压力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号