首页> 外文会议>International Conference on Advances in Manufacturing and Materials Engineering >Optimization of TiO2 thin film thickness for dye sensitized solar cell applications
【24h】

Optimization of TiO2 thin film thickness for dye sensitized solar cell applications

机译:染料敏化太阳能电池应用的TiO2薄膜厚度优化

获取原文

摘要

Dye sensitized solar cells (DSSCs) rely on the absorption of photons by the dye molecules which are transported to the conduction band of the TiO2 electrode. The microstructure, energy gap and the absorption spectra of the TiO2 electrodes highly affects the efficiency of the cell. In this paper, the absorption spectra and energy gap has been studied by varying the thickness of the TiO2 paste. Nanocrystalline TiO2 thin films were deposited on ITO glass substrate with three different thickness (4.54 μm, 7.12 μm and 12.3 μm) by using doctor blade method. After deposition all the samples were sintered at 450°C after deposition to enhance the particle bonding and for achieving better adhesion. The samples were characterized by UV-VIS spectra for determining the absorption spectra and Scanning Electron Microscopy (SEM) for investigating the thickness and the surface morphology. Fabricating the electrodes with different thickness showed significant changes in the energy gap and from the results it can be concluded that the energy gap increases with the increased thickness. The highest energy gap of 2.25ev and absorption 3.791 was achieved by 12.3μm thick sample. The absorption spectra also shows better absorption throughout the whole visible light range but the SEM images suggests that 12.3μm thick sample shows cracks all over the deposited region which will cause current leakage when the cell is assembled. Therefore, the optimum result was achieved by 7.12μm thick sample providing 1.9 ev energy gap and 3.91 absorption peak.
机译:染料敏化太阳能电池(DSSCs)依赖于将光子的吸收通过被输送到TiO 2电极的导电带的染料分子。 TiO2电极的微观结构,能量隙和吸收光谱极大地影响了细胞的效率。在本文中,通过改变TiO 2浆料的厚度来研究吸收光谱和能量隙。通过使用刮刀方法,纳米晶TiO2薄膜沉积在ITO玻璃基板上,其具有三种不同的厚度(4.54μm,7.12μm和12.3μm)。沉积后,在沉积后在450℃下烧结所有样品以增强颗粒键合并用于实现更好的粘合性。通过UV-Vis光谱表征样品,用于确定吸收光谱和扫描电子显微镜(SEM),用于研究厚度和表面形态。制造具有不同厚度的电极显示出能量隙的显着变化,并且可以得出结论,即能隙随着厚度的增加而增加。 2.25eV和吸收3.791的最高能量隙是通过12.3μm厚的样品实现。在整个可见光范围内,但是SEM图像的吸收光谱也示出了更好的吸收表明,12.3μm厚的样品示出了裂缝所有在沉积区域,这将引起电流泄漏当电池被组装。因此,通过7.12μm厚的样品提供最佳结果提供1.9 eV能量隙和3.91吸收峰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号