首页> 外文会议>SPE Norway One Day Seminar >Best Practices and Recommendations for Magnetic Directional Surveying in the Barents Sea
【24h】

Best Practices and Recommendations for Magnetic Directional Surveying in the Barents Sea

机译:磁道海洋磁定向测量的最佳实践和建议

获取原文

摘要

In the coming years, several oil and gas fields in the Barents Sea will be developed. The Barents Sea is located between 71-74° latitude and is a part of the Arctic Ocean. At such high latitudes, surveying with magnetic Measurement-while-drilling (MWD) and gyro survey instruments result in almost twice the azimuth uncertainties of the North Sea latitudes. Magnetic MWD is the most common survey method, mainly due to low cost and time consumption to perform a measurement. However, the main drawback with magnetic MWD survey instruments is the sensitivity to external magnetic fields resulting from magnetic components in the bottom hole assembly (BHA), magnetic particles in drilling fluids, and fluctuations in the Earth's magnetic field. The Barents Sea is in the auroral zone where the largest geomagnetic field disturbances are experienced. Consequently, achieving accurate reference field parameters for MWD surveying is challenging. Different methods exist to maintain an acceptable quality of magnetic survey data at high latitudes. One approach is to isolate the magnetometer sensors from external magnetic interference and apply uncorrected azimuth calculation. This is advantageous because uncorrected azimuth is less sensitive to external field disturbances than corrected azimuth achieved by drill string interference (DSI) correction or multi-station analysis (MSA). For offshore sites, limitations exist for using geomagnetic reference data from land-based monitoring stations to correct MWD data. Large azimuth uncertainties result in major lateral wellbore position uncertainties and give less room for blunders and gross survey errors when high accuracy is required. Consequently, it is vital to minimize the effects of external error sources. Several downsides of large position uncertainties exist, such as increased distance between wells to avoid collisions and decreased chance of hitting geological targets. The combined effect of external error sources is complex and in specific cases certain error sources cannot be detected using conventional quality control procedures. In this paper, recommendations to overcome the above-mentioned challenges will be presented.
机译:在未来几年中,将开发若干人口中的石油和天然气田。宠物海位于71-74°纬度之间,是北冰洋的一部分。在这种高纬度地区,使用磁测量钻孔(MWD)和陀螺仪调查仪器进行测量,导致北海纬度的四分之三的两倍。磁性MWD是最常见的测量方法,主要是由于低成本和时间消耗来执行测量。然而,具有磁性MWD测量仪器的主要缺点是对底部孔组件(BHA)中的磁性部件,钻井液中的磁性颗粒的外部磁场的敏感性,以及地球磁场中的波动。哀留海洋位于经验丰富的地磁场干扰的极光区。因此,实现MWD测量的准确参考场参数是具有挑战性的。存在不同的方法以保持高纬度地区的磁性调查数据的可接受质量。一种方法是将磁力计传感器与外部磁干扰隔离并应用未校正的方位角计算。这是有利的,因为未经校正的方位角对外部场扰动的敏感性而不是通过钻串干扰(DSI)校正或多站分析(MSA)实现的校正方位角。对于海上站点,存在使用从基于陆地监测站的地磁参考数据来纠正MWD数据的限制。大方位角不确定性导致主要的横向井筒位置不确定性,并且在需要高精度时,较少的空白和毛额误差的空间。因此,最小化外部误差源的影响至关重要。存在大位置不确定性的几个缺点,例如井之间的距离增加,以避免碰撞和降低击中地质目标的机会。外部误差源的组合效果复杂,并且在特定情况下,不能使用常规质量控制程序检测某些误差源。在本文中,将提出克服上述挑战的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号