首页> 外文会议>Mechanical Science and Technology Update >Studies on the dynamics of impact interaction of the mechanoreological model under elastic plastic transformation of its mechanical system
【24h】

Studies on the dynamics of impact interaction of the mechanoreological model under elastic plastic transformation of its mechanical system

机译:机械模型在机械模型对机械系统弹性塑性变换下的影响互动的动态研究

获取原文

摘要

Dynamic interaction of machine and equipment parts and elements is a widespread process. Therefore, simulation and analysis of these processes are relevant tasks. To study impact interaction, a mechanorheological viscoelastic plastic model was developed. The force in the beginning of plastic deformations is an important model parameter. However, previous researches were carried out under impact loading of the model. They assumed that the plastic deformation occurs along with the elastic one. However, impact processes are more sophisticated. At first, only elastic deformations occur. When stresses achieve a yield point, plastic deformations occur. Therefore, the influence of the force on the model impact interaction dynamics is of great interest. The results let us draw the following conclusions. At the loading stage, when a viscoelastic model transforms into a viscoelastic plastic model, plastic deformations decrease the impact force and rebound height. Due to plastic deformations, the surface becomes more flexible, the impact duration increases body braking acceleration and inertia decrease. It leads to the decrease in the dynamic load and rebound height. The research results can be used for further development of methods for calculating model parameters, enhancing impact process simulation accuracy and reliability.
机译:机器和设备零件和元素的动态相互作用是一个广泛的过程。因此,这些过程的模拟和分析是相关的任务。为了研究冲击相互作用,开发了一种力学粘弹性塑料模型。塑性变形开头的力是一个重要的模型参数。然而,以前的研究是在模型的冲击载荷下进行的。他们认为塑性变形与弹性一体一起发生。但是,影响过程更复杂。首先,仅发生弹性变形。当应力达到屈服点时,会发生塑性变形。因此,力对模型影响互动动态的影响非常令人兴趣。结果让我们得出以下结论。在装载阶段,当粘弹性模型变成粘弹性塑料模型时,塑性变形降低了冲击力和反弹高度。由于塑性变形,表面变得更加柔韧,冲击持续时间增加身体制动加速度和惯性减小。它导致动态负荷和反弹高度的降低。研究结果可用于进一步开发用于计算模型参数的方法,增强冲击过程模拟精度和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号