首页> 外文会议>ASME Turbomachinery Technical Conference and Exposition >IMPACT OF PREDICTED COMBUSTOR OUTLET CONDITIONS ON THE AEROTHERMAL PERFORMANCE OF FILM-COOLED HPT VANES
【24h】

IMPACT OF PREDICTED COMBUSTOR OUTLET CONDITIONS ON THE AEROTHERMAL PERFORMANCE OF FILM-COOLED HPT VANES

机译:预测燃烧器出口条件对薄膜冷却HPT叶片空气性能的影响

获取原文

摘要

Turbine inlet conditions in modern aero-engines employing lean-burn combustors are characterised by highly swirled flow and non-uniform temperature distributions. As a consequence of the lack of confidence in numerical predictions and the uncertainty of measurement campaigns, the use of wide safety margins is of common practice in the design of turbine cooling systems, thus affecting the engine performance and efficiency. Previous experiences showed how only scale-resolving approaches such as Large-eddy and Scale-adapting simulations are capable of overcoming the limitations of RANS, significantly improving the accuracy in the prediction of flow and temperature fields at the combustor outlet. However it is worth investigating the impact of such differences on the aerothermal performance of the NGVs, as to understand the limitations entailed in the current approach for their thermal design. Industrial applications in fact usually rely on ID, circumferentially-averaged profiles of pressure, velocity and temperature at the combustor-turbine interface in conjunction with Reynolds-averaged Navier-Stokes (RANS) models. This paper describes the investigation performed on an experimental test case consisting of a combustor simulator equipped with NGVs. Three numerical modelling strategies were compared in terms of flow field and thermal loads on the film-cooled vanes: i) RANS model of the NGVs with inlet conditions obtained from a RANS simulation of the combustor; ii) RANS model of the NGVs with inlet conditions obtained from a Scale-Adaptive Simulation (SAS) of the combustor; iii) SAS model inclusive of both combustor and NGVs. The results of this study show that estimating the aerodynamics at the NGV exit does not demand particularly complex approaches, whereas the limitations of standard RANS models are highlighted again when the turbulent mixing is key. High-fidelity predictions of the conditions at the turbine entrance proved to be very beneficial to reduce discrepancies in the estimation of local adiabatic wall temperature of even 100 K. However, a further leap forward can be achieved with an integrated simulation, capable of reproducing the transport of the unsteady fluctuations generated in the combustor up into the turbine, which plays a key role in presence of film cooling. This work therefore points out how keeping the analysis of combustor and NGVs separate can lead to a significantly misleading estimation of the thermal loads and ultimately to a wrong thermal design of the cooling system.
机译:采用瘦燃烧燃烧器的现代航空发动机中的涡轮机入口条件的特点是高度旋转的流动和不均匀的温度分布。由于对数值预测的信心缺乏信心和测量运动的不确定性,因此在涡轮机冷却系统的设计中使用宽安全裕度是常见的做法,从而影响发动机性能和效率。以前的经验表明,诸如大涡和规模调整模拟等规模解析方法的速度是多么能够克服RAN的局限性,显着提高了燃烧器出口处的流动和温度场预测的准确性。然而,值得调查这种差异对NGV的空气性能的影响,了解在热设计目前的方法中所需的限制。实际上,工业应用通常依赖于ID,燃烧器 - 涡轮接口的压力,速度和温度的周向平均曲线,与雷诺平均的Navier-Stokes(RAN)模型结合。本文介绍了由配备有NGVS的燃烧器模拟器组成的实验测试用例的研究。在流场和薄膜冷却叶片上的热负荷方面比较了三种数值建模策略:i)NGV的rans模型与从燃烧器的Rans模拟中获得的入口条件; ii)从燃烧器的尺度自适应模拟(SAS)获得的入口条件的NGVS的rans模型; III)SAS模型包括燃烧器和NGV。本研究的结果表明,估计NGV出口处的空气动力学不要求特别复杂的方法,而当湍流混合是关键时,标准RAN模型的局限性被突出显示。涡轮机入口的条件的高保真预测证明是非常有益的,以减少估计局部绝热壁温度甚至100k的差异。然而,通过集成模拟可以实现进一步的飞跃,能够再现在燃烧器中产生的不稳定波动的运输到涡轮机中,在存在薄膜冷却时起着关键作用。因此,这项工作指出了对燃烧器和NGV的分析如何分离可以导致热负荷的显着误导性估计,并最终对冷却系统的错误热设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号