首页> 外文会议>International Symposium on Cavitation >Luminescence based measurements in micro cavitating flow
【24h】

Luminescence based measurements in micro cavitating flow

机译:微空化流动的发光测量

获取原文

摘要

Microchannels are often used to study fluid dynamics. For steady state problems like cavitating flow, fluorescent microscopy, with the addition of temperature sensitive nanoprobes into the observed fluid, can be used to determine the temperature at a chosen point, averaged over the integration time. Coupled with a confocal microscope setup, we are able to produce two and three dimensional temperature maps of the flow in the microchannel by the use of ratiometric intensity measurements. The nanometric scale of the probes assures fast thermalization of the probes and below certain concentrations does not modify the properties of the studied liquid. Since the probes are not present in the vapor phase, the relative intensity map also corresponds to the average void fraction in the flow. These nanoprobes are composed of a gold core and a polysiloxane shell containing fluorescent dyes (FITC, RBITC). Organic dyes were chosen due to their compatibility with the shell and primarily for the fast luminescence lifetime, which is essential due to the rapid flow in the microchannel and the consequent short dwell time of an individual nanoprobe in the excitation volume. The temperature information in each measured point is obtained from the temperature sensitive spectrum of the dye. The shell protects the dye from the environment and allows for the functionalization of the surface to prevent agglomeration, while the gold core mitigates photo bleaching. The technic allowed us to observe temperature gradients in microfluidic two-phase flow and observe the thermal effect associated with phase transition. Typically, a region of decreased temperature is observed downstream the orifice in the liquid-vapor stream, attributed to the cooling of the liquid due to the latent heat of the phase change. However, small changes in the diaphragm geometry can induce recirculating vortices, where the vapor bubbles condensate and induce a region of increased temperature.
机译:微通道经常被用来研究流体动力学。对于像空化流,荧光显微镜,通过加入温度敏感的纳米探针的进入观察流体稳态的问题,可以被用来确定在选定的点处的温度,平均在积分时间。再加上共焦显微镜的设置,我们能够通过利用比例强度测量的,以产生在微通道中的流动的二维和三维温度图。探针和一定浓度低于探针保证快速热化的纳米尺度不修改所研究的液体的性质。由于探针是不存在于气相中,相对强度图也对应于流中的平均空隙度。这些纳米探针是由一个金核和含有荧光染料(FITC,RBITC)聚硅氧烷壳。有机染料被选择由于它们与壳的相容性和主要用于快速发光寿命,这是为了在微通道中的快速流动,并在激励体积的个体纳米探针的随后的停留时间短,由于必需。在每个测量点处的温度信息从该染料的温度敏感谱获得。壳从环境保护染料并允许表面的官能化,以防止附聚,而金核减轻光漂白。所述TECHNIC允许我们观察温度梯度在微流体双相流和观察与相转变相关联的热效应。典型地,温度下降的区域被观察到的下游的液体 - 蒸气流中的所述孔,归因于由于液体的冷却到相变的潜热。然而,在所述隔膜的几何形状的微小变化可诱导再循环涡流,其中,所述蒸汽泡冷凝物和诱导升高的温度的区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号