首页> 外文会议>IEEE World Conference on Photovoltaic Energy Conversion >Enhanced Upconversion Performance in Alloyed CdSe(Te)/CdS1–xSex/CdSe Core/Rod/Emitter Nanostructures
【24h】

Enhanced Upconversion Performance in Alloyed CdSe(Te)/CdS1–xSex/CdSe Core/Rod/Emitter Nanostructures

机译:合金CDSE(TE)/ CDS 1-X SE X / CDSE芯/棒/发射器纳米结构中增强了高增强性能

获取原文

摘要

Colloidal quantum dot (QD) nanostructures have been shown to convert multiple low-energy photons into a single, high-energy photon through a process called photon upconversion. QD nanostructures could replace conventional upconverter materials in solar cell applications and can be tuned to absorb photons transparent to the host cell and emit usable photons, increasing the short circuit current of the host cell while maintaining open circuit voltage. Double QDs (coupled via a nanorod) have previously demonstrated 0.1% upconversion efficiency and a peak-to-peak energy gain of 380meV under pulsed excitation equivalent to 105 times solar concentration. However, for upconverters to be viable for solar energy harvesting, they must have high efficiency in low-light (1-sun) conditions. Engineering improved performance under device-relevant conditions requires a better understanding of the upconversion mechanisms. We synthesize core/rod/emitter complexes and demonstrate near-infrared (NIR)-to-visible upconversion photoluminescence (UCPL) in these structures with continuous wave (CW) illumination near low-light conditions. We further observe photon energy gains of 700meV (from 850nm to 575nm). To improve upconversion efficiency, we grow homogeneous absorber QDs and alloyed rods and systematically study the quantum yield using an integrating sphere to measure upconversion photoluminescence relative to a rhodamine 101 standard. We observe an order of magnitude increase in upconversion quantum efficiency. Further understanding the effect of morphology and composition on upconversion and carrier transfer mechanisms is critical to realizing improved optical performance and upconversion quantum efficiencies in these nanostructures.
机译:已经显示胶体量子点(QD)纳米结构通过称为Photon Upconversion的过程将多个低能量光子转换成单个,高能量的光子。 QD纳米结构可以取代太阳能电池应用中的常规上变频器材料,并且可以被调谐以吸收孔电池透明的光子并发射可用光子,同时保持开路电压的同时增加宿主电池的短路电流。双QD(通过NANOROD耦合)先前展示了0.1%的上升效率和380mev的峰值峰值能量增益,其脉冲激励在相当于10的脉冲激励下 5 时光太阳能。然而,对于太阳能收集的上变频器是可行的,它们必须在低光(1-SUN)条件下具有高效率。工程改善了设备相关条件下的性能需要更好地了解上变化机制。我们在这些结构中合成核/棒/发射极配合物,并展示近红外(NIR) - 可见的上变电致发光(UCPL),在低光条件下具有连续波(CW)照明。我们进一步观察到700mev的光子能量衰减(从850nm到575nm)。为了提高上转换效率,我们将均匀吸收QDS和合金棒生长,并系统地使用积分球进行量子产量来测量相对于罗丹明101标准的上转化光致发光。我们观察到升级量子效率的幅度增加。进一步理解形态和组合物对上变化和载流子转移机制的影响对于实现这些纳米结构中改善的光学性能和上变化量子效率至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号