首页> 外文会议>ISRM European Rock Mechanics Symposium >Hydromechanical Behavior of a Synthetic Homogenous Carbonate Rock During Direct Shear
【24h】

Hydromechanical Behavior of a Synthetic Homogenous Carbonate Rock During Direct Shear

机译:直剪中合成均质碳酸盐岩石的流体力学行为

获取原文

摘要

We have conducted a series of hydro-mechanical shear experiments using the CSIRO direct shear rig. There blocks were fabricated using loose calcite and quartz grains cemented by a calcium-rich fluid that permeated and filled the interconnected pore spaces to bind the grains together, i.e. this technology is known as CIPS (Calcite In-situ Precipitation System). Those intact homogenous CIPS blocks (240 x 120 x 150 mm) were sheared to final displacements of 20, 70 or 120 mm under a constant effective vertical stress of 10 MPa. Fluid-flow response across the fault zone was monitored during both shear deformation and hold periods, while keeping a constant injection pressure throughout the measurement. On reaching the final displacement (20, 70 or 120 mm), we cored a cylindrical plug of 38 mm diameter that contains fault zone and parts of intact wall rock at either end. In parallel to the experimental study, a 2D mechanical model of the shear experiments was developed using Smoothed Particle Hydrodynamics (SPH), suitable for deformation processes involving very large strains. Numerical results were compared with the experimental data for a better understanding of local deformation process, stress distribution and potential tension cracks in samples during shear. Shear results show all the tested blocks indicated strain-softening behaviour and the flow rate decreased as displacement increased. Plastic deformation is compactant and resulted in the development of localised zone of deformation that decrease the fluid transmissibility of the blocks. Furthermore, x-ray CT images show that the created deformation features in the sheared blocks resembled those observed in natural fault zones.
机译:我们使用CSIRO直接剪切装置进行了一系列水力机械剪切实验。使用宽松的方解石和石英晶粒由富含钙的液体渗透并填充互连的孔隙空间,以将晶粒结合在一起,即该技术称为CIPS(方解石原位降水系统)。那些完整的均匀芯片块(240×120×150mm)在10MPa的恒定有效垂直应力下剪切至20,70或120mm的最终位移。在剪切变形和保持周期内监测断层区域的流体流动响应,同时在整个测量中保持恒定的喷射压力。在达到最终位移(20,70或120毫米)时,我们芯片的直径为38毫米的圆柱形塞,其中包含故障区和任何一端完整的壁岩。与实验研究平行,使用平滑的粒子流体动力学(SPH)开发了剪切实验的2D机械模型,适用于涉及非常大的菌株的变形方法。将数值结果与实验数据进行比较,以便在剪切期间更好地理解局部变形过程,应力分布和潜在的张力裂缝。剪切结果显示所有测试块表明应变软化行为,随着位移增加时,流量降低。塑性变形是紧凑的,导致局部变形区域的开发,从而降低块的流体传动性。此外,X射线CT图像表明,剪切块中的产生的变形特征类似于在自然故障区域中观察到的块。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号