首页> 外文会议>International Conference Nanotechnology and Nanomaterials >Configuration of Charge Waves in Polymethine Linear Dye Systems
【24h】

Configuration of Charge Waves in Polymethine Linear Dye Systems

机译:聚甲素线性染料系统中电荷波的构造

获取原文

摘要

In the middle of the essential particular properties of linear conjugate systems 1, it is an ability to exhibit quasimetallic conductivity. The basis polymers 1 looks like [R-(CH)_m-R]~n, where n= 0, ±1, ±2. This discovery, awarded with the Nobel Prize in 2000, led to the revision of many theoretical models based on representations of the action of n -electrons in the conjugated molecules, primarily in anions and cations of polymethine dyes, in cation or anion radicals of polyenes, and thus inspired the improvement of original theoretical model of the electronic structure of similar special type of systems, taking into account the features of charge distribution and molecular geometry [1-4]. In addition to the use of conjugated systems as molecular conductors [1], they find numerous applications in nonlinear optics: as a result, polymethine dyes with uneven number of carbon group CH (system 1, where m= 2k+1,n= ±1, and R-various heterocyclic residues) are capable to intensively absorb and emanate a quant of light in visible part of spectrum and near-infrared part of the spectrum [5, 6]. Such unique spectral properties are suitable to the definite charge distribution in a main and in the excited state, as well as an arrangement of the lengths of carbon-carbon bonds [1-8]. According to modern notions, the carbon atom in the conjugate system is in the sp~3-hybridized state and accordingly, forms three a-bonds, resulting in the molecules 1 being flat, as can be seen in Fig. 1, which shows an example of polymethine ion at 5, n= + 1, R= CH_2. The last 2p_z-electron together with the same electrons of other carbon atoms forms a common collective n-electron system. The transition from a neutral conjugate molecule to ions that is the injection of an electron or a hole into a high polarizable common collective n-electronic system is accompanied by the manifestation of supposed soliton level (level of impurity) in the energy gap in addition to significant shift in both the c
机译:在线性共轭系统1的基本特定特性的中间,它是表现出全部的电导率的能力。基础聚合物1看起来像[r-(ch)_m-r]〜n,其中n = 0,±1,±2。在2000年签订诺贝尔奖的这种发现导致了基于缀合分子中N-Electrons在共轭分子的作用的表示的许多理论模型的修订,主要是聚醚的阳离子和阴离子的阴离子和阳离子并因此激发了改进了类似特殊类型系统的电子结构的原始理论模型,考虑到电荷分布和分子几何形状的特征[1-4]。除了使用共轭系统作为分子导体[1]之外,它们在非线性光学中发现了许多应用:结果,具有不均匀数量的碳基CH(系统1,其中M = 2k + 1,n =±如图1和R-各种杂环残基)能够在光谱和近红外部分的可见部分中强烈地吸收并散发光的光照[5,6]。这种独特的光谱特性适用于主要和激发态的定义电荷分布,以及碳 - 碳键长度的布置[1-8]。根据现代观念,缀合物系统中的碳原子在SP〜3杂交状态下,相应地形成三个α-键,导致分子1平坦,如图1所示,它可以如图1所示。聚甲磺酸甲丁离子在5,n = + 1,R = CH_2的实例。最后2P_Z-Electron与相同的其他碳原子相同的电子形成了普通的集体N-电子系统。从中性缀合物分子转变为作为将电子或孔注入高可极化的公共集体N-电子系统中的离子,伴随着能隙中假定的孤子水平(杂质水平)的表现为C的大幅转移

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号