首页> 外文会议>SPE Hydraulic Fracturing Technology Conference and Exhibition >Lost in the Shadows: Surviving Fracturing Hazards with Fluid Tracking
【24h】

Lost in the Shadows: Surviving Fracturing Hazards with Fluid Tracking

机译:迷失在阴影中:幸存与液体跟踪造成压裂危险

获取原文

摘要

Every unconventional well has a unique set of objectives with the same end goal: effective stimulation.During stimulation,a host of problems can potentially arise.For these problems,a solution is needed,but it is often difficult to visualize.Hydraulic fracturing operations encounter challenges including stressshadowing,thief zones,and fracture-driven interference on a regular basis.A novel application ofcontrolled source electromagnetics(CSEM),called fluid tracking,monitors and images hydraulic fracturingoperations.In this paper,we present case studies showing common fracturing hazards and we describe howfluid tracking provides mitigation insight.When fracturing fluid is injected into the reservoir rock,it changes the subsurface electrical impedance.The fluid tracking method involves measuring these changes to image the fluid movement.Operationsconsist of using a controlled electromagnetic field and a dense network of receivers arranged over thehorizontal well trajectory.The data recorded over the course of a stage are then refined into a map viewmotion picture indicating where fluid is flowing.After visualizing and tracking fluid,engineers either adjustdesigns or confirm success before completing the next well.During hydraulic fracturing,areas of high signal amplitude indicate regions where the fluid successfullypenetrated the rock.Interpretation provides the azimuth and half-length of each stage's induced fracturenetwork.In the first case study,the operator used fluid tracking to investigate the performance of a newcompletion design.The design increased the total stage count with tighter spacing than the previous design.Results showed stress shadowing effects and inter-stage interference were greater than expected.Unlikethe symmetric fracture geometry predicted by models,this completion had less than 50% of its monitoredstages with signal on both sides of the well.Thus,the majority of stages were highly asymmetric.In fact,theasymmetric stimulation contributed to fracture-driven interference(i.e.,a”frac hit”)on an offset well.Theoperator found the increased stage design did not create more effectively stimulated rock volume.Instead,the engineer decided to lengthen stages,decreasing the number required to stimulate future wells.Thisresulted in lower completion costs without sacrificing production.The second case study explores effectsof varied geology along a lateral.For one stage,although diverter was applied,fracturing fluid intersecteda natural fracture network and was carried away from the intended target zone.Fluid tracking identified the results of ineffective diversion.Although the observation does not indicate a definitive conclusion on howto avoid the fracture network,it certainly showed the diversion method was insufficient.Operators choose to monitor treatments with fluid tracking to diagnose fracturing hazards and informmitigation strategies as they improve completion designs and approach an optimized stimulation.The moreunderstanding the industry gains on inter-well and inter-stage communication along with other unknownsduring fracturing operations,the better equipped engineers will be when they determine which designmodifications have the largest impacts.
机译:每一个非常规良好的良好都有一个独特的目标,具有相同的目标目标:有效刺激。刺激刺激,可能会出现一些问题。对于这些问题,需要解决方案,但仍然很难想象。液压压裂操作遭遇挑战包括压力沉积,小偷区域和骨折驱动干扰的常规基础。Controlled源电磁装置(CSEM)的新建应用,称为流体跟踪,监视器和图像液压骨质术。在本文中,我们存在案例研究表明常见的压裂危害我们描述了Howfluid跟踪提供缓解洞察力。将压裂液注入储层岩石时,它改变了地下电阻抗。流体跟踪方法涉及测量这些变化,以将流体运动和密集的网络复制在海拔井轨迹上排列的接收器。数据重新开始然后在阶段的过程中被精炼成地图视图图片,指示流体流动的地方。可视化和跟踪流体,工程师在完成下一个井之前调整或确认成功。液压压裂,高信号幅度的区域表示区域在岩石成功覆盖的情况下,interpretation提供每个阶段的诱导的骨折工作的方位角和半长度。在第一种情况下,操作员使用流体跟踪来研究新互换设计的性能。设计增加了更严格的总阶段计数间隔比以前的设计。结果表明应力阴影效果和阶段间干扰大于模型预测的预期。诸如模型预测的对称断裂几何形状,这一完成占其井两侧的信号的显示器少于50%。大多数阶段都是高度不对称的。事实上,这种对称的刺激促成了f在偏移井上进行了判断的干扰(即,“FRAC命中”)。纯机发现舞台设计增加了没有创造更有效的刺激的岩石体积。工程师决定延长阶段,减少刺激未来水井所需的数量在没有牺牲生产的情况下,较低的完成成本下降。第二种案例研究探讨了各种地质沿着侧面的影响。虽然应用了分流器,压裂液相形是自然骨折网络,但识别出杂交轨道效率导入的结果。虽然观察结果并不表明如何在HOWTO避免骨折网络上结论,但它肯定显示了转移方法不足。恒化器选择以液体跟踪监测治疗,以诊断危险,因为他们改善了危害危险和信息性策略设计和接近优化的刺激。更广泛的刺激行业在井间和阶段间沟通以及其他未知的压裂操作中,装备较好的工程师将是当他们确定哪些设计层产生最大的影响时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号