首页> 外文会议>Offshore Mediterranean Conference and Exhibition >WELL LOG-BASED DETERMINATION AND VALIDATION OF THE SANDSTONE/SHALE BOUNDARY FOR RESERVOIRS CONTAINING RADIOACTIVE ACCESORY MINERALS
【24h】

WELL LOG-BASED DETERMINATION AND VALIDATION OF THE SANDSTONE/SHALE BOUNDARY FOR RESERVOIRS CONTAINING RADIOACTIVE ACCESORY MINERALS

机译:含有放射性疗法矿物质储层砂岩/页岩边界的基于井的确定和验证

获取原文

摘要

Detailed stratigraphic interpretation of borehole electrical images includes the classification of different bedding types, such as sand (sandstone) bedding or shale bedding. Successful interpretation depends on accurately determining the sandstone - shale boundary. When using the total gamma ray log to separate sandstones and shales, this boundary (cutoff value) can frequently be set at about 60 to 80 API units in the case of common reservoirs. Using KCl in the drilling fluids leads to an overall radioactivity increase of the formations and an increase in the gamma ray cutoff value. If the sandstones contain potassium-rich micas and feldspars or heavy minerals rich in thorium or uranium, their radioactivity increases and the gamma ray cutoff increases accordingly. The increased radioactivity can make the sandstone reservoirs look like shaly formations, and the estimation of the clay volume fraction (V_(clay)) from the total gamma ray log may become inaccurate. In this case, V_(clay) can be estimated from neutron porosity – bulk density crossplots, but this method has its own limitations (bad hole or hydrocarbon-bearing intervals). If the V_(clay) can be properly estimated from single clay indicators or from a combination of indicators, the ternary Shepard (1954) diagram may then be used for lithological classification: sand (0 to 25% V_(clay)), clayey sand (25 to 50% V_(clay)), sandy clay (50 to 75% V_(clay)), clay (75 to 100% V_(clay)). The accuracy of V_(clay) estimation and of the sandstone and shale intervals delineation can be checked by using gamma ray – bulk density, gamma ray – neutron porosity and gamma ray – apparent resistivity crossplots. Each of these methods responds differently to the presence of clay, and their joint response allows the identification of lithological trends and patterns in the data, as well as the separation of sandstone and shale intervals by means of suitable gamma ray cutoff values. The separation of these intervals can be further validated by comparison with the static image resulting from the processing of borehole electrical imaging data (sandstones – light tones and shales – dark tones). This paper presents case studies regarding the application of these methods in hydrocarbon exploration wells.
机译:钻孔电气图像的详细地层解释包括不同床上用品类型的分类,例如沙(砂岩)床上用品或页岩床上用品。成功的解释取决于准确地确定砂岩 - 页岩边界。在使用总伽马射线日志分离砂岩和避沙音时,在公共储库的情况下,该边界(截止值)通常可以在大约60到80个API单元中设置。在钻井液中使用KCL导致形成的整体放射性增加和伽马射线截止值的增加。如果砂岩含有富含钾的云母和富含钍或铀的富含矿石或重型矿物质,则它们的放射性增加,并且伽马射线截止值相应地增加。增加的放射性可以使砂岩储层看起来像Shaly的形成,并且粘土体积分数(V_(粘土))来自总伽马射线日志的估计可能是不准确的。在这种情况下,可以从中子孔隙率 - 堆积密度交叉仪估计V_(粘土),但该方法具有其自身的限制(不良孔或碳氢化合物间隔)。如果可以从单个粘土指示符或从指标的组合估计V_(粘土),则Ternary Shepard(1954)图可以用于岩性分类:沙子(0至25%V_(粘土)),粘土沙(25至50%V_(粘土)),砂质粘土(50至75%V_(粘土)),粘土(75至100%V_(粘土))。可以通过使用伽马射线 - 堆积密度,伽马射线 - 中子孔隙度和γ射线 - 表观电阻性交联来检查V_(粘土)估计和砂岩和页岩间隔描绘的精度。这些方法中的每种方法都与粘土的存在不同,并且它们的关节响应允许识别数据中的岩性趋势和模式,以及通过合适的伽马射线截止值分离砂岩和页岩间隔。通过与钻孔电成像数据的处理产生的静态图像(Sandstones - Light Tones和Shales - 暗音)比较,可以进一步验证这些间隔的分离。本文提出了关于这些方法在烃勘查孔中的应用的案例研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号