首页> 外文会议>SPE Offshore Europe Conference Exhibition >HPC-Driven Seismic Processing and Time-Lapse 4D Monitoring
【24h】

HPC-Driven Seismic Processing and Time-Lapse 4D Monitoring

机译:HPC驱动的地震加工和延时4D监控

获取原文

摘要

The field of seismic full-wave inversion (FWI) and high-resolution reservoir simulation are in a transition period where methods based on simplified wave propagation and flow physics phenomena are successively replaced by fully numerical approaches of dense earth model representations running on high-performance computers (HPC) that allow exploration geophysicists and reservoir engineers to unlock, leverage tomorrow's reserves and mitigate subsurface uncertainties in a cost-effective way. The objective is on the one hand to exploit the complete seismic recordings for the benefit of improved vertical resolution of subsurface elastic anisotropic heterogeneous Earth models; and on the other hand, to understand physics at small scale to improve microscopic recovery and improve reservoir modeling predictability towards optimized field development with proprietary in-house developed technology run on HPC. The promise of elastic FWI for seismic imaging and interpretation is to employ waveforms (raw observed seismograms recorded with long/broad range and densely sampled offset/azimuths and full frequency bandwidth) to account for refractions, reflections and high-order scattering, and make NO physical assumptions in the simulation of any observed amplitudes. However, FWI is an ill-posed problem with non-unique solutions, i.e., many combinations of earth elastic parameters can fit the data equally well. The non-uniqueness of solution triggers the uncertainty in the earth model parameters which equally affect both seismic imaging and reservoir modeling workflows. As a result, there is a need to create multiple sets of models in an attempt to optimally explain the data (seismograms). Therefore, the solution of a seismic inverse problem has very high computational complexity that can only be efficiently handled using high-performance computers (HPC). Such computers contain large numbers of nodes interconnected via the high throughput networks; each node combines conventional CPU cores and GPU (graphic processing units) accelerators. Through a combination of theory, methodology and case studies, we demonstrate the recent progress and value added with cost-effective fit-for-purpose Total's proprietary technology efficiently deployed on heterogeneous HPC to yield new acreages in frontier domains, better characterize/predict subsurface reservoirs, and mitigate the geosciences and drilling uncertainties.
机译:地震全波反转(FWI)和高分辨率储存器模拟领域处于过渡期,通过在高性能上运行的密集地球模型表示的完全数值方法连续地取代了基于简化的波传播和流量物理现象的方法计算机(HPC),允许勘探地球物理学家和油藏工程师解锁,利用明天的储备和减少地下的不确定性具有成本效益的方式。目的是一方面,利用完整的地震录音,以便改善地下弹性各向异性异质地球模型的垂直分辨率;另一方面,了解小规模的物理,以改善微观恢复,并在HPC上专有的内部开发技术进行专有内部开发技术的优化现场开发的可预测性。用于地震成像和解释的弹性FWI的承诺是采用波形(以长/宽范围和浓度的偏移/方位角和全频带和全频带和全频带和全频带)进行波形(录制的原始地震图),以考虑折射,反射和高阶散射,并制作不在任何观察到的幅度模拟中的物理假设。然而,FWI是一种具有非唯一解决方案的不良问题,即地球弹性参数的许多组合可以同样适合数据。解决方案的非唯一性触发了地球模型参数中的不确定性,其同样影响地震成像和储层建模工作流程。结果,需要创建多组模型,以便最佳地解释数据(地震图)。因此,地震逆问题的解决方案具有非常高的计算复杂性,其只能使用高性能计算机(HPC)有效地处理。这些计算机包含通过高吞吐量网络互连的大量节点;每个节点都结合了传统的CPU核和GPU(图形处理单元)加速器。通过理论,方法和案例研究的组合,我们展示了最近的进展和增值,具有成本效益的FIT-FIT-的专有技术,有效地部署在异质HPC上,以产生前端领域的新种植面积,更好地表征/预测地下储层,并减轻地球科学和钻井不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号