首页> 外文会议>SAE World Congress Experience >Improving the Accuracy of Dynamic Vibration Fatigue Simulation
【24h】

Improving the Accuracy of Dynamic Vibration Fatigue Simulation

机译:提高动态振动疲劳仿真的准确性

获取原文
获取外文期刊封面目录资料

摘要

Finite Element Analysis (FEA)-based structural simulations are typically used to assess the durability of automotive components. Many parts experience vibration in use, and resonance effects are directly linked to many structural problems. In this case, dynamics must be included in the structural analysis. Dynamic FEA can be more realistic than static analysis, but it requires knowledge of additional characteristics such as mass and damping. Damping is an important property when performing dynamic FEA, whether transient or steady state dynamics, as it governs the magnitude of the dynamic stress response and hence durability. Unfortunately the importance of damping is often overlooked; sometimes a default damping value is erroneously assumed for all modes. Errors in damping lead to errors in the stress response, which in turn lead to significant changes in the fatigue life estimates. For example: 3% versus 5% damping ratio can lead to fatigue life estimates varying over an order of magnitude. Therefore, accurate fatigue life predictions rely heavily on realistic damping ratios. Damping must be evaluated from physical tests, in which the component is excited and responses are measured. The modal parameters for the structure’s modes of vibration are then extracted using experimental modal analysis techniques. The purpose of this paper is first, to explain the critical role that damping plays in fatigue damage; and second, to recommend best practices for improving FEA-based stress and durability analysis. Methods for quickly and easily determining damping ratios will be introduced. An example of an exhaust system will be used to illustrate the importance of using experimental modal analysis to adjust the properties of a FE-based dynamic structural analysis in order to obtain fatigue life results that correlate with testing.
机译:基于有限元分析(FEA)的结构模拟通常用于评估汽车组分的耐久性。许多零件在使用中经历振动,并且共振效应直接相关到许多结构问题。在这种情况下,必须包括在结构分析中的动态。动态FEA可以比静态分析更加真实,但它需要了解额外的特性,例如质量和阻尼。在执行动态FEA时,阻尼是瞬态或稳态动态的重要特性,因为它控制了动态应力响应的大小,因此耐用。不幸的是,阻尼的重要性往往被忽视;有时,对于所有模式都错误地假设默认阻尼值。阻尼的误差导致应力响应中的错误,这反过来导致疲劳寿命估计的显着变化。例如:3%与5%阻尼比率可能导致疲劳寿命估计在幅度上变化。因此,准确的疲劳寿命预测依赖于现实阻尼比率。必须从物理测试评估阻尼,其中振兴部件并测量响应。然后使用实验模态分析技术提取结构的振动模式的模态参数。本文的目的是首先,解释阻尼在疲劳损伤中起作用的关键作用;其次,为改善基于FEA的压力和耐久性分析的最佳实践。将介绍用于快速且容易地确定阻尼比率的方法。排气系统的一个例子将用于说明使用实验模态分析来调节Fe基动态结构分析的性质的重要性,以便获得与测试相关的疲劳寿命结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号