首页> 外文会议>SAE World Congress Experience >A Tabulated-Chemistry Approach Applied to a Quasi-Dimensional Combustion Model for a Fast and Accurate Knock Prediction in Spark-Ignition Engines
【24h】

A Tabulated-Chemistry Approach Applied to a Quasi-Dimensional Combustion Model for a Fast and Accurate Knock Prediction in Spark-Ignition Engines

机译:表格化学方法应用于火花点火发动机快速准确爆震预测的准尺寸燃烧模型

获取原文

摘要

The description of knock phenomenon is a critical issue in a combustion model for Spark-Ignition (SI) engines. The most known theory to explain this phenomenon is based on the Auto-Ignition (AI) of the end-gas, ahead the flame front. The accurate description of this process requires the handling of various aspects, such as the impact of the fuel composition, the presence of residual gas or water in the burning mixture, the influence of cool flame heat release, etc. This concern can be faced by the solution of proper chemistry schemes for gasoline blends. Whichever is the modeling environment, either 3D or 0D, the on-line solution of a chemical kinetic scheme drastically affects the computational time. In this paper, a procedure for an accurate and fast prediction of the hydrocarbons auto-ignition, applied to phenomenological SI engine combustion models, is proposed. It is based on a tabulated approach, operated on both ignition delay times and reaction rates. This technique, widely used in 3D calculations, is extended to 0D models to overcome the inaccuracies typical of the most common ignition delay approaches, based on the Livengood-Wu integral solution. The aim is to combine the predictability of a detailed chemistry with an acceptable computational effort. First, the tabulated technique is verified through comparisons with a chemical solver for a semi-detailed kinetic scheme in constant-pressure and constant-volume configurations. Then a phenomenological model, based on the end-gas AI computation, is utilized to predict the knock occurrence in different SI engines, including both naturally-aspirated and turbocharged architectures. 0D/1D simulations are performed both with an online solution of the chemistry and employing the tabulated approach. Assessment with reference KLSA values shows that the knock model, based on the tabulated chemistry, is able to well reproduce the essential features of the auto-ignition process in the analyzed engines, with a limited impact on the computational time.
机译:爆震现象的描述是火花点火(Si)发动机的燃烧模型中的一个关键问题。最着名的理论来解释这种现象是基于最终气体的自动点火(AI),在火焰前面。该过程的准确描述需要处理各种方面,例如燃料组合物的影响,燃烧混合物中残留气体的存在,残留气体或水的存在,凉爽的火焰热释放的影响等。这种担忧可以面对汽油共混物适当化学方案的溶液。无论3D或0D,哪种是建模环境,化学动力学方案的在线解决方案大大影响了计算时间。在本文中,提出了一种方法,提出了一种应用于应用于现象学SI发动机燃烧模型的烃类自动点火的方法。它基于表格的方法,在点火延迟时间和反应速率上操作。这种技术广泛用于3D计算,扩展到0D模型,以克服基于Livengood-Wu积分解决方案的最常见的点火延迟方法的典型不准确性。目的是将详细化学的可预测性与可接受的计算努力结合起来。首先,通过与恒压和恒定容积配置的半详细动力学方案的化学求解器进行比较来验证制表技术。然后,基于最终气体AI计算的现象学模型用于预测不同Si发动机的爆震发生,包括天然吸气和涡轮增压架构。 0D / 1D模拟,通过化学的在线解决方案进行并采用制表方法。与参考KLSA值的评估表明,基于制表化学的爆震模型能够在分析的发动机中良好地再现自动点火过程的基本特征,对计算时间产生有限的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号