首页> 外文会议>SAE World Congress Experience >Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning
【24h】

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

机译:车辆速度预测和能量管理策略第1部分:使用机器学习的确定性和随机车辆速度预测

获取原文

摘要

There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model. To derive the prediction models, numerous data inputs are used, including internal vehicle data (CAN bus information) and external vehicle data (radar and V2I information). Two data sets representative of real world driving in Ann Arbor, Michigan are used for model development and validation. One of these data sets reflects highway-focused single-car driving, and the other one is representative of a mixed highway/urban three-car connected driving. Time shift, a novel index which reflects the time lag between predicted and actual vehicle speed values, is introduced to assess the prediction accuracy of vehicle velocity. Also, a more standard Mean Absolute Error (MAE) metric is used to evaluate the prediction results. In order to improve the vehicle speed prediction accuracy, data augmentation with additional labels is used to cue machine learners on different features present in the driving trajectories. The results show that these artificially augmented labels can significantly improve the prediction accuracy both in terms of MAE and time shift metrics. The results also indicate that deterministic models can provide more accurate performance on average while stochastic models may be less accurate in terms of the average velocity prediction but provide information on the prediction error distribution which can be exploited in stochastic and scenario based model predictive control. Overall, LSTM deep neural networks have been able to achieve the best accuracy in predicting vehicle velocity. For 10 sec ahead vehicle velocity prediction, the LSTM model demonstrates prediction accuracy with MAE of about 1 m/s and time shift of 0 to 4 seconds. The results also suggest substantial benefits in using external vehicle data, indicative of the current traffic situation, for vehicle speed prediction.
机译:迫切需要开发准确和坚固的方法,以预测车辆速度,以提高汽车车辆的燃油经济性/能效,驾驶能力和安全性。本文将研究结果详述了对预测车辆速度的各种方法的结果。重点是超过1到10秒预测地平线的短期预测。这种短期预测可以集成到混合动力电动车辆能量管理策略中,并具有提高HEV能效的潜力。本文考虑了几种确定性和随机模型,用于预测未来的车辆速度。确定性模型包括自动回归移动平均(ARMA)模型,具有外部输入(NARX)浅神经网络的非线性自动回归和长短期内存(LSTM)深神经网络。随机模型包括马尔可夫链(MC)模型和条件线性高斯(CLG)模型。为了推导预测模型,使用许多数据输入,包括内部车辆数据(CAN总线信息)和外部车辆数据(雷达和V2I信息)。密歇根州的Ann Arbor驾驶的真实世界代表的两种数据集用于模型开发和验证。其中一个数据集反映了高速公路的单车驾驶,另一个是代表混合的公路/城市三车连接的驾驶。介绍了反映预测和实际车速值之间的时间滞后的新颖索引,以评估车辆速度的预测精度。此外,使用更标准的平均绝对误差(MAE)度量来评估预测结果。为了提高车速预测准确性,使用附加标签的数据增强用于提示在驾驶轨迹中存在的不同特征上的机器学习者。结果表明,这些人工增强的标签可以在MAE和时移度量方面显着提高预测准确性。研究结果还表明,确定性模型可以提供平均更精确的性能,同时随机模型可能在平均速度预测方面不太准确,但提供可在随机的,基于情景模型预测控制被利用的预测误差分布信息。总体而言,LSTM深度神经网络已经能够在预测车辆速度来实现最佳准确性。对于10秒的前方车辆速度预测,LSTM模型表明了具有约1米/秒的MAE的预测精度,随时间偏移0至4秒。结果还提出了使用外部车辆数据,指示当前交通情况的实质性益处,用于车速预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号