首页> 外文会议>SAE World Congress Experience >Auto-Ignition and Spray Characteristics of n-Heptane and iso-Octane Fuels in Ignition Quality Tester
【24h】

Auto-Ignition and Spray Characteristics of n-Heptane and iso-Octane Fuels in Ignition Quality Tester

机译:点火质量测试仪中正庚烷和异辛烷燃料的自动点火和喷涂特性

获取原文

摘要

Numerical simulations were conducted to systematically assess the effects of different spray models on the ignition delay predictions and compared with experimental measurements obtained at the KAUST ignition quality tester (IQT) facility. The influence of physical properties and chemical kinetics over the ignition delay time is also investigated. The IQT experiments provided the pressure traces as the main observables, which are not sufficient to obtain a detailed understanding of physical (breakup, evaporation) and chemical (reactivity) processes associated with auto-ignition. A three-dimensional computational fluid dynamics (CFD) code, CONVERGE, was used to capture the detailed fluid/spray dynamics and chemical characteristics within the IQT configuration. The Reynolds-averaged Navier-Stokes (RANS) turbulence with multi-zone chemistry sub-models was adopted with a reduced chemical kinetic mechanism for n-heptane and iso-octane. The emphasis was on the assessment of two common spray breakup models, namely the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) and linearized instability sheet atomization (LISA) models, in terms of their influence on auto-ignition predictions. Two spray models resulted in different local mixing, and their influence in the prediction of auto-ignition was investigated. The relative importance of physical ignition delay, characterized by spray evaporation and mixing processes, in the overall ignition behavior for the two different fuels were examined. The results provided an improved understanding of the essential contribution of physical and chemical processes that are critical in describing the IQT auto-ignition event at different pressure and temperature conditions, and allowed a systematic way to distinguish between the physical and chemical ignition delay times.
机译:进行了数值模拟以系统地评估不同喷雾模型对点火延迟预测的影响,并与在KAURT点火质量测试仪(IQT)设施中获得的实验测量相比。还研究了物理性质和化学动力学对点火延迟时间的影响。 IQT实验提供了压力迹线作为主要可观察结果,这不足以获得与自动点火相关的物理(分类,蒸发)和化学(反应性)过程的详细了解。使用三维计算流体动力学(CFD)代码收敛,用于捕获IQT配置内的详细流体/喷射动力学和化学特性。 Reynolds平均的Navier-Stokes(RANS)湍流与多区化学子模型采用,用于N-庚烷和异辛烷的化学动力学机制。重点是评估两种常见的喷雾分手模型,即Kelvin-Helmholtz / Rayleigh-Taylor(KH-RT)和线性化不稳定的纸张雾化(LISA)模型,就其对自动点火预测的影响而言。两种喷涂模型导致不同的局部混合,研究了它们对自动点火预测的影响。检查了两种不同燃料的整体点火行为的喷雾蒸发和混合过程的物理点火延迟的相对重要性。结果提供了改进对物理和化学过程的基本贡献的理解,这对于在不同的压力和温度条件下描述IQT自动点火事件,并且允许有系统的方式区分物理和化学点火延迟时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号