首页> 外文会议>SAE World Congress Experience >Investigation of Vehicle Speed Prediction from Neural Network Fit of Real World Driving Data for Improved Engine On/Off Control of the EcoCAR3 Hybrid Camaro
【24h】

Investigation of Vehicle Speed Prediction from Neural Network Fit of Real World Driving Data for Improved Engine On/Off Control of the EcoCAR3 Hybrid Camaro

机译:改进发动机开/关官杂交型CAMARO的现实世界驾驶数据的神经网络拟合车辆速度预测研究

获取原文

摘要

The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle. Various prediction windows are analyzed and compared to quantify tradeoffs between prediction window size and speed prediction error for a given drive cycle. To investigate the fuel economy (FE) improvement potential of this new control strategy, a high fidelity model of a Toyota Prius, developed by Colorado State University, is used. An optimal dynamic programming (DP) engine controller is implemented in the Prius model. Several exemplar controllers are studied for the specified drive cycle: the model baseline controller, a DP derived engine controller using NARX Artificial Neural Network speed predictions, and a DP derived engine controller using a 100% accurate speed prediction. These simulations allow for investigation into the tradeoffs between different prediction window sizes. Additionally, the results provide insight into what FE benefit can be expected from speed prediction compared to baseline and idealized conditions. This potentially achievable FE benefit is used as motivation to develop a predictive controller that can be implemented in real-time on the supervisory controller of CSU’s Plug-in Hybrid Electric (PHEV) Camaro.
机译:Ecocar3竞争挑战学生团队重新设计2016年雪佛兰CAMARO,以减少环境影响并提高能源效率,同时保持消费者对CAMARO期望的性能和安全性。新型混合动力系的能源管理是汽车整体效率的一体组成部分,是科罗拉多州立大学(CSU)车辆创新团队的主要重点。以前的研究表明,对未来驾驶特性的错误预测可用于更有效地管理混合动力驱动。在这项研究中,研究了一种新颖的现实世界可分辨的能源管理策略,用于ecoCar3杂交CAMARO。该策略采用非线性自回归人工神经网络,其具有来自所选驱动循环的现实世界驾驶数据的外源输入(NARX人工神经网络),以预测沿着该驱动周期的未来车辆速度。分析各种预测窗口并进行比较,以在给定的驱动周期中量化预测窗口大小和速度预测误差之间的折衷。为了调查这一新控制策略的燃油经济性(FE)改善潜力,使用科罗拉多州立大学开发的丰田普锐斯的高保真模型。最佳动态编程(DP)发动机控制器在PRIUS模型中实现。研究了几种示例控制器,用于指定的驱动周期:模型基线控制器,使用NARX人工神经网络速度预测的DP导出发动机控制器,以及使用100%精确速度预测的DP导出的发动机控制器。这些模拟允许调查不同预测窗口尺寸之间的权衡。此外,与基线和理想化条件相比,结果可以提供对速度预测可以预测FE效益的洞察。这种可能可实现的FE效益被用作开发预测控制器的动机,该预测控制器可以在CSU的插件混合电动(PHEV)CAMARO的监控控制器上实时实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号