首页> 外文会议>International ESAFORM Conference on Material Forming >A unified dislocation density-dependent physical-based constitutive model for cold metal forming
【24h】

A unified dislocation density-dependent physical-based constitutive model for cold metal forming

机译:冷金属成形统一脱位依赖性物理型本构模型

获取原文

摘要

Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.
机译:位错密度相关的基于物理的金属塑性的构模型而在计算上高效的和历史的依赖性,可以精确地计算用于改变工艺参数,例如应变,应变率和温度;不同的加载模式,例如连续变形,蠕变和松弛;微观冶金工艺;和不同的合金家庭内的化学组合物。由于这些模型是建立在主导变形必不可少的现象,他们有一个更大范围的可用性和有效性。此外,它们适合用于制造链的模拟,因为它们可以有效地通过整个制造链,并且还道间周期以下的材料状态计算各种制造过程的累积效应,并给该材料的行为和最终产品的性能的真实预测。在本研究中引入冷金属塑性,影响冷暖塑性变形在多晶体金属使用物理/冶金内部变量,如位错密度和有效晶粒直径中描述的物理过程的基于物理的构模型。这些内部变量的演变正在使用描述冷塑性变形期间主导材料行为的物理过程适当等式来计算。进行验证,该模型在一般的隐式各向同性弹粘塑性算法如ABAQUS /标准用户定义的材料子程序(UMAT)的数值实施,并用于扰乱测试的有限元模拟和完整的冷锻造的情况下硬化MnCr钢的周期家庭。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号