首页> 外文会议>US Combustion Meeting >Predicting ash deposition from non-isothermal, turbulent parallel flows
【24h】

Predicting ash deposition from non-isothermal, turbulent parallel flows

机译:预测非等温,湍流平行流的灰分沉积

获取原文

摘要

Staged, pressurized oxy-combustion (SPOC) is a unique process that burns coal under pressure with low flue gas recycle, and is a promising technology for CO_2 mitigation in coal-based power plants. One of the challenges of this technology is to minimize ash deposition and slagging in the boiler. The SPOC boiler features a co-axial, turbulent parallel flow, which is completely different from the swirl- or recirculation-based flows in conventional coal-fired boilers. The difference in flow leads to different ash deposition behaviors. To better understand ash deposition under these conditions, the particle transport and heat transfer processes are modeled in a non-isothermal, turbulent parallel flow. The particle impact rates and particle deposition temperatures (i.e., the temperature of a particle when it hits the wall) for different sized particles are predicted. These two parameters are critical in determining the ash slagging tendency in a pressurized boiler. Simulation results show that, with the boundary layer being accurately resolved and an appropriate turbulence model being carefully chosen, the predicted particle impact rate agrees well with experimental data from the literature. For particle cooling, we defined a non-dimensional particle deposition temperature, T_d~+, and a non-dimensional characteristic time for particle cooling, τ_T~+. Simulation results showed T_d~+ is a function of only τ_T~+ and the non-dimensional particle relaxation time, τ~+. When τ~+ is less than 5, the deposition temperature is always close to the wall temperature. When τ~+ is larger than 5, T_d~+ increases with τ_T~+/τ~+.
机译:上升,加压氧气燃烧(SPOC)是一种独特的方法,可在低烟气回收下燃烧煤炭,并且是煤炭电厂CO_2缓解的有希望的技术。该技术的一个挑战是最小化锅炉中的灰分沉积和粘合。 SPOC锅炉具有共同轴向,湍流平行的流动,其与传统的燃煤锅炉中的旋流或再循环流动完全不同。流动的差异导致不同的灰分沉积行为。为了在这些条件下更好地理解灰分沉积,颗粒传输和传热过程以非等温,湍流平行的流动建模。预测颗粒冲击率和颗粒沉积温度(即,当它击中壁时的颗粒的温度)预测用于不同尺寸的颗粒。这两个参数对于确定加压锅炉中的灰分粘连趋势至关重要。仿真结果表明,利用边界层进行准确地解决,并且仔细选择适当的湍流模型,预测的粒子冲击率与来自文献的实验数据吻合得很好。对于颗粒冷却,我们定义了颗粒冷却的非尺寸粒子沉积温度,T_D〜+和非尺寸特性时间,τ_t〜+。仿真结果显示为t_d〜+是仅τ_t〜+和非尺寸粒子松弛时间的函数,τ〜+。当τ〜+小于5时,沉积温度总是靠近壁温。当τ〜+大于5时,T_D〜+随τ_t〜+ /τ〜+增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号