首页> 外文期刊>Chemical Engineering Communications >Extended graetz soulution for predicting nonreacting vapor species concentration profile and wall deposition rate for non-isothermal laminar flow through a pipe
【24h】

Extended graetz soulution for predicting nonreacting vapor species concentration profile and wall deposition rate for non-isothermal laminar flow through a pipe

机译:扩展的格氏解决方案,用于预测非等温层流通过管道时的非反应性蒸气浓度分布和壁沉积速率

获取原文
获取原文并翻译 | 示例
       

摘要

Diffusive vapor deposition rates are predicted on the walls of a straight tube in which fully developed non-isothermal laminar flow exists. As a prerequisite to calculating the deposition rates at different axial positions on the wall, the species mass balance equation (conveclive diffusion) is solved, using the method of separation of variables. For the present calculations, fully developed Poiseuille How is considered. The case of isothermal flow was solved by Graetz (18X5). However, in most engineering systems, a highly non-isothermal environment exists where the center of the tube is at a temperature that is very different from the temperature at the wall. This results in Fickian diffusivity being a function of radial position, which can appreciably alter the species concentration profile in the tube and its deposition behavior. A method is presented here to predict the species concentration profile and its deposition rates on the tube wall, systematically, taking into account the variation in species Fickian difliusivily with radial position. Using the method of separation of variables, the problem is reduced to one of solving an ordinary differential equation, which belongs to the Slurm-Liouville class of equations. The first 10 eigenvalues, associated eigenfunelions. and relevant constants of the reduced equation have been computed and reported and are needed to estimate the species concentration profile and vapor deposition rates at the wall. Asymptotic eigenvalues are also reported and are seen to be in good agreement with the computed values.
机译:在存在完全展开的非等温层流的直管壁上预测了扩散的气相沉积速率。作为计算壁上不同轴向位置沉积速率的先决条件,使用变量分离方法解决了物质质量平衡方程(对流扩散)。对于当前计算,将考虑完全开发的Poiseuille How。等温流动的情况由Graetz(18X5)解决。但是,在大多数工程系统中,存在高度非等温的环境,其中管的中心温度与壁上的温度有很大不同。这导致Fickian扩散率是径向位置的函数,可以明显改变管中的物质浓度分布及其沉积行为。这里提出了一种方法来系统地预测物种浓度分布及其在管壁上的沉积速率,同时考虑了物种Fickian随径向位置的变化。使用变量分离方法,将问题简化为求解属于Slurm-Liouville类方程组的常微分方程组之一。前10个特征值,关联的特征函数。已经计算和报告了简化方程的相关常数,并需要它们来估计物种浓度分布和壁上的​​气相沉积速率。还报告了渐近特征值,并被认为与计算值非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号