首页> 外文会议>International Conference on Deep and High Stress Minin >Computational fluid dynamic modelling of the Frood-Stobie ice stope thermal storage for mine ventilation heating
【24h】

Computational fluid dynamic modelling of the Frood-Stobie ice stope thermal storage for mine ventilation heating

机译:矿井通风加热的Frood-Stobie Ice Tope热存储器计算流体动力学建模

获取原文

摘要

Deep mines are subject to increased heat loads from the ventilation air, which undergoes auto-compression and increases approximately 1°C per 100 m. Also, mines located in sub-arctic climates require the mine ventilation air to be heated in winter to ensure that icing does not occur within the ventilation shaft. Ice stopes, a system by which ice is created underground by spraying warm return service water onto the cold incoming air in winter, can be utilised for both heating and cooling. The ice storage can be maintained till cooling is required in summer, at which point the ice is melted and the resulting chilled water is similarly sprayed onto the oncoming ventilation air to cool it down, in a bulk air cooler. Computations fluid dynamics simulation, using ANSYS Fluent, was conducted to allow more control on the system and optimise the ice creation within thestope. Simulation results showed higher snow yields and heat transfer efficiencies in colder temperatures with simulations conducted for -5 to -30°C. The maximum air temperature which could be achieved at the stope air outlet, while still resulting in the water particles being fully frozen, was approximately -2.2°C. A linear correlation could be derived between the optimal water flow rate required (for maximum heating and ice fraction of one) and the inlet air temperature, allowing some control on the system's performance. Future work will concentrate on establishing the best water spray parameters to melt the ice within the stope and produce chilled water to be used in the bulk air cooler.
机译:深入的矿物可能会增加来自通风空气的热载荷,该通风空气经历自动压缩,每100米增加约1°C。此外,位于亚北极气候中的地雷需要在冬季加热矿井通风空气,以确保在通风轴内不会发生糖霜。冰停止,通过将温暖的返回服务水喷洒到冬季冷入空气中,通过将冰在地下产生的系统,可用于加热和冷却。可以保持冰储存直至在夏季需要冷却,此时冰熔化,并将所得冷却水类似地喷洒到迎面而来的通风空气上以使其冷却,在散装空气冷却器中。计算使用ANSYS流畅的计算流体动力学模拟,以便在系统上进行更多控制,并在众所周知中优化冰创建。仿真结果表明,在较冷的温度下具有较高的雪产量和传热效率,其模拟为-5至-30°C。在缩小空气出口处可以实现的最大气温,同时仍然导致水颗粒完全冷冻,约为-2.2℃。可以在所需的最佳水流速率(用于最大加热和一个)和入口空气温度之间的最佳水流速率之间进行线性相关性,从而允许对系统的性能进行一些控制。未来的工作将集中在建立最佳的水喷雾参数上,以在散步内熔化冰并生产在散装空气冷却器中使用的冷水。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号