首页> 外文会议>Conference on energy-based treatment of tissue and assessment VIII >Finite Element Method (FEM) Model of the Mechanical Stress on Phospholipid Membranes from Shockwaves Produced in Nanosecond Electric Pulses (nsEP)
【24h】

Finite Element Method (FEM) Model of the Mechanical Stress on Phospholipid Membranes from Shockwaves Produced in Nanosecond Electric Pulses (nsEP)

机译:纳秒电脉冲中产生的冲击波磷脂膜的机械应力模型(NSEP)

获取原文

摘要

The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated Shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from Shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.
机译:负责纳米型脉冲电场(NSEP)的磷脂膜纳米孔的底层机制仍然未知。通过导电介质的高电场通过可能诱导的两个主要贡献因子:膜处的电场相互作用和由暴露于电场暴露于电场的极性浸没介质的电击产生的冲击波。以前的工作集中在细胞膜的电场相互作用,通过这种模型作为运输晶格方法。我们的目的是模拟从在极性液体中的高压脉冲的上升沿所形成的密度扰动引起的冲击波细胞膜相互作用,从而产生远离电极向电池膜传播的冲击波。利用来自细胞膜机械参数的先前数据,并且NSEP产生的冲击波参数,基于Helmholtz方程的声学冲击波模型开发并耦合到COMSOL中有限元建模的细胞膜模型。开发了声学结构相互作用模型,以说明基于胡克法律的冲击波和膜相互作用导致的谐波膜位移和应力。通过利用包括皮质应力限制和静液压压力梯度的膜机械击穿参数来预测药物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号