首页> 外文会议>SPE Western Regional Meeting >Estimation of Optimal Frac Design Parameters for Asymmetric Hydraulic Fractures as a Result of Interacting Hydraulic and Natural Fractures-Application to the Eagle Ford
【24h】

Estimation of Optimal Frac Design Parameters for Asymmetric Hydraulic Fractures as a Result of Interacting Hydraulic and Natural Fractures-Application to the Eagle Ford

机译:估计液压和自然骨折的非对称液压骨折的最佳FRAC设计参数 - 应用于Eagle Ford

获取原文

摘要

Estimation of permeability in the Stimulated Reservoir Volume (SRV) is a vital input in any completion optimization workflow. One method to estimate the stimulated permeability in the SRV is to couple geomechanical modeling of the interaction between hydraulic and natural fractures with hydraulic fracture mechanics commonly used to design frac jobs. The proposed approach starts by deriving strain resulting from the integration of geological, geophysical and geomechanical modeling of interacting hydraulic and natural fractures. A unique feature of this approach is its ability to predict microseismicity, thus confirming the validity of the input natural fracture model and the geomechanical approach used to evaluate its interaction with the hydraulic fractures. The optimum validated geomechanical asymmetric half-lengths are then estimated from the derived strain map. These estimated geomechanical half lengths are used as a constraint in a frac design model which is able to incorporate this information and optimize stage treatments according to the variable SRV. The frac design parameters then need to be adjusted in order to approximately match the geomechanical half-lengths provided by the strain map. A new analytical asymmetric frac design model is developed, validated with existing commercial frac design software, and used in this study. The new asymmetric analytical frac design model is a pseudo 3D model that accounts for the variation in height in an iterative approach along with considering the asymmetric half lengths due to the lateral stress gradients in a heterogeneous reservoir. The new asymmetric analytical frac design model was compared to existing commercial frac design software and was found to provide similar estimations of frac heights but in a fraction of the time needed to run the commercial frac design software. The ability to combine these models and simultaneously solve for the optimum fracture height is provided by the constraints of the geomechanical half lengths derived from the strain map. In order to guide the engineer designing a frac job an optimum selection of the design parameters to get the target fracture geometry, this paper also presents a parametric analysis using experimental design of various fracing parameters used in our asymmetric hydraulic fracture model. In this study, the workflow was successfully applied to a complex Eagle Ford well. The frac design tool optimizes important parameters such as the injection rate, fluid viscosity, proppant type, proppant size, proppant specific gravity and leak-off coefficient in order to honor the interaction of natural and hydraulic fractures accounted for in geomechanics. The frac design model also provides vital information such as the proppant schedule to be pumped and the variation of propped length, width, and net pressure as a function of time. The results of this workflow are the fracture conductivity and proppant concentration along the fracture length and their interpolation between the stages so they can be exported to any reservoir simulator. 2-level fractional factorial design was used to screen for statistically significant parameters that affected fracture geometry in the considered Eagle Ford well. The use of experimental design drastically reduces the simulations necesary to evaluate 15 frac design parameters from 215 to 24, a 1000-fold decrease. Using an analytical frac design model is fast—its half lengths already validated with microseismic data, efficient, scientific, and derived from principles of mass balance, fluid momentum, pressure-width relations and applied with appropriate initial and boundary conditions. A systematic and quick assessment of treatment parameters to match the desired half lengths provided by the geomechanical simulation results in an accurate frac design model. The key results provided by the frac design model help in long-term planning of operations necessary for optimal well completions and field development,
机译:刺激储存量(SRV)中渗透性估计是任何完整优化工作流程中的重要输入。一种估算SRV刺激的渗透率的方法是将液压和自然骨折与液压断裂力学之间的相互作用的地质力学建模耦合,常用于设计FRAC作业。所提出的方法通过衍生出地质,地球物理和地质力学建模的集成而导致的应变开始,从而互动液压和自然骨折。这种方法的独特特征是其预测微震性的能力,从而确认输入自然骨折模型的有效性和用于评估其与液压骨折的相互作用的地质力学方法。然后从导出的应变映射估计最佳验证的地质力学非对称半长度。这些估计的地质力学半长度被用作FRAC设计模型中的约束,其能够根据可变SRV结合该信息并优化舞台处理。然后需要调整FRAC设计参数,以便大致匹配应变映射提供的地质力学半长度。开发了一种新的分析非对称FRAC设计模型,验证了现有的商业FRAC设计软件,并在本研究中使用。的新的非对称的分析压裂设计模型是一个伪3D模型计及与考虑非对称半长度沿迭代方法的高度的变化,由于在非均相储存器中的横向应力梯度。将新的非对称分析FRAC设计模型与现有的商用FRAC设计软件进行比较,发现提供了类似于FRAC高度的类似估计,但在运行商业FRAC设计软件所需的一段时间内。通过从应变映射导出的地质力学半长度的约束提供了组合这些模型并同时解决最佳骨折高度的能力。为了指导工程师设计FRAC工作的最佳选择设计参数以获得目标断裂几何形状,本文还介绍了使用我们的非对称液压骨折模型中使用的各种折射率参数的实验设计的参数分析。在这项研究中,工作流程已成功应用于复杂的鹰福特。 FRAC设计工具优化了注射速率,流体粘度,支撑剂型,支撑剂尺寸,支撑体比重和泄漏系数的重要参数,以尊重地质力学中占天然和液压骨折的相互作用。 FRAC设计模型还提供了诸如要泵送的支线时间表等重要信息,以及作为时间的函数的支撑长度,宽度和净压力的变化。该工作流程的结果是沿着裂缝长度的断裂电导率和支撑剂浓度及其在阶段之间的插值,因此它们可以出口到任何储层模拟器。 2级分数阶乘设计用于筛选统计上显着的参数,这些参数在被审议的鹰福特井中受到骨折几何形状。使用实验设计的使用大大减少了DICESARY,以评估了从215到24的15个FRAC设计参数,减少1000倍。使用分析FRAC设计模型快速 - 已经验证了微震数据,高效,科学和源自质量平衡,流体动量,压力宽度关系的原则,并应用了适当的初始和边界条件。对处理参数的系统和快速评估,以匹配由地质力学仿真提供的所需半长度导致准确的FRAC设计模型。 FRAC设计模型提供的关键结果有助于优化井完井和现场开发所需的长期规划,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号