首页> 外文会议>JSAE/SAE International Powertrains, Fuels Lubricants Meeting >A Numerical Study on Predicting Combustion Chamber Wall Surface Temperature Distributions in a Diesel Engine and their Effects on Combustion, Emission and Heat Loss Characteristics by Using a 3D-CFD Code Combined with a Detailed Heat Transfer Model
【24h】

A Numerical Study on Predicting Combustion Chamber Wall Surface Temperature Distributions in a Diesel Engine and their Effects on Combustion, Emission and Heat Loss Characteristics by Using a 3D-CFD Code Combined with a Detailed Heat Transfer Model

机译:用3D-CFD码与详细传热模型结合使用3D CFD码预测柴油机燃烧室壁表面温度分布的数值研究及其对燃烧,发射和热损失特性的影响

获取原文

摘要

A three-dimensional computational fluid dynamics (3D-CFD) code was combined with a detailed combustion chamber heat transfer model. The established model allowed not only prediction of instantaneous combustion chamber wall surface temperature distributions in practical calculation time but also investigation of the characteristics of combustion, emissions and heat losses affected by the wall temperature distributions. Although zero-dimensional combustion analysis can consider temporal changes in the heat transfer coefficient and in-cylinder gas temperature, it cannot take into account the effect of interactions between spatially distributed charge and wall temperatures. In contrast, 3D-CFD analysis can consider temporal and spatial changes in both parameters. However, in most zero-/multi- dimensional combustion analyses, wall temperatures are assumed to be temporally constant and spatially homogeneous. In reality, the wall temperature exhibits temporal and spatial distributions, thus influencing the characteristics of combustion, emissions and heat losses. In the present study, two numerical methods were developed to predict the temporal and spatial wall temperature distributions within a suitable calculation time for practical use. First, one-dimensional heat transfer calculation inside the wall along the normal direction to the wall surface was coupled to KIVA-4 with detailed chemistry. Second, ERENA, an explicit ordinary differential equation (ODE) solver developed by Morii et al., was applied to the detailed chemical kinetics. By utilizing these methods, the heat transfer calculation represented less than 1% of the total calculation time. The total calculation time was about 160 times faster than when calculated by the VODE solver with a single CPU thread on a desktop PC. The results indicate that the wall temperature and heat loss characteristics depend on the spray impingement on the walls rather than in-cylinder flow, like squish or swirl. Thus, the in-cylinder gas temperature distribution is affected by the change of wall temperatures, thereby altering the emission characteristics.
机译:三维计算流体动力学(3D-CFD)代码与详细的燃烧室传热模型相结合。所建立的模型不仅允许在实际计算时间内预测瞬时燃烧室壁面温度分布,而且还研究受壁温分布影响的燃烧,排放和热损失的特性。尽管零维燃烧分析可以考虑传热系数和缸内气体温度的时间变化,但它不能考虑空间分布电荷和壁温之间的相互作用的效果。相比之下,3D-CFD分析可以考虑两个参数的时间和空间变化。然而,在大多数零/多维燃烧分析中,假设壁温度在时间上恒定和空间均匀。实际上,壁温表现出时间和空间分布,从而影响燃烧,排放和热损失的特征。在本研究中,开发了两种数值方法以预测在合适的计算时间内的时间和空间壁温度分布以进行实际使用。首先,沿着正常方向与壁面内的一维传热计算耦合到Kiva-4,具有详细的化学。其次,Erena是Morii等人开发的明确常微分方程(ODE)求解器。应用于详细的化学动力学。通过利用这些方法,传热计算表示占总计算时间的1%。总计算时间比桌面PC上的单个CPU线程的vode求解器计算得比vode求解器的计算时间快160倍。结果表明,壁温和热量损失特性取决于墙壁上的喷雾冲击而不是缸内流动,如鳞片状或旋涡。因此,缸内气体温度分布受壁温的变化影响,从而改变排放特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号