首页> 外文会议>SPE Middle East Unconventional Resources Conference >Geo-Engineered Completion Optimization:An Integrated,Multi-Disciplinary Approach to Improve Stimulation Efficiency in Unconventional Shale Reservoirs
【24h】

Geo-Engineered Completion Optimization:An Integrated,Multi-Disciplinary Approach to Improve Stimulation Efficiency in Unconventional Shale Reservoirs

机译:地理工程完成优化:一种综合,多学科方法,提高非传统页岩水库刺激效率

获取原文

摘要

Large,high density fracture networks are necessary to deliver commercial production rates from sub-microdarcy permeability organic-rich shale reservoirs.Operators have increased lateral length and fracture stages as the primary means to improve well performance and,more recently,are tailoring completion techniques to local experience and reservoir-specific learning.In particular,closer fracture stage spacing or increased number of stages per well have driven improvements in well performance. Large scale adoption occurs when the change in performance is clearly linked to the reservoir-specific completion design. Horizontal well fracturing efficiency in unconventional reservoirs is notoriously poor.Numerous authors report that 40 to 60 per cent of frac stages or individual perforation clusters have been shown (albeit with highly uncertain surveillance methods)to contribute little or no production.The fracture initiation and propagation process is very complex in shale;it is affected by in-situ stress,geomechanical heterogeneity,presence of natural fractures,and completion parameters.Close cluster spacing can provide enhanced well production;however,if the spacing is too close,stress shadowing among these clusters can actually induce higher stresses,creating fracture competition. This paper presents an approach to the integration of these parameters through both state-of-the-art geological characterization and unconventional 3D hydraulic fracture modeling.We couple stochastic discrete fracture network(DFN)models of in-situ natural fractures with a state-of-the art 3D unconven- tional fracture simulator.The modeled fracture geometry and associated conductivity is exported into a dynamic reservoir flow model,for production performance prediction.Calibrated toolkits and workflows, underpinned by integrated surveillance including distributed temperature and acoustic fiber optic sensing (DTS/DAS),are used to optimize horizontal well completions.A case study is presented which demon- strates the technical merits and economic benefits of using this multidisciplinary approach to completion optimization.
机译:需要大,高密度骨折网络,以提供来自亚微米渗透性有机物的商业生产率的商业生产率。横向长度和断裂阶段的初级手段,以提高良好性能,最近,较近,是剪裁完成技术的主要方法。本地经验和储层特定学习。特别是更接近骨折阶段间距或每股阶段数量增加的良好性能。当性能变化与储层特定的完整设计明显相关时,会发生大规模采用。非传统水库的水平良好的压裂效率是众所周知的穷人。尚未显示40%至60%的FRAC阶段或60%(尽管具有高度不确定的监测方法),以贡献很少或没有生产。骨折启动和繁殖流程在页岩是非常复杂的;它受到原位应力的影响,地质力学异质性,天然骨折的存在,以及完成参数。Clest Cluster间距可以提供增强的良好生产;但是,如果间距太近,则这些群集实际上可以诱导更高的压力,产生骨折竞争。本文通过最先进的地质特征和非传统的3D液压骨折建模,介绍了这些参数的整合。夫妇随机离散断裂网络(DFN)原位自然骨折的模型具有状态 - 第3D展开骨折模拟器。建模的断裂几何和相关电导率出口到动态储层流模型中,用于生产性能预测。通过集成监视,包括分布式温度和声光学传感的集成监视为基础,包括分布式温度和声光学光学传感(DTS / DAS)用于优化水平井完井。提出了案例研究,这证明了使用这种多学科方法完成优化的技术优点和经济效益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号