首页> 外文会议>International Workshop on the Mechanics of Hearing >Computational Exploration of Single-Protein Mechanics by Steered Molecular Dynamics
【24h】

Computational Exploration of Single-Protein Mechanics by Steered Molecular Dynamics

机译:转向分子动力学对单蛋白力学的计算探索

获取原文

摘要

Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their "single-molecule responses" to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.
机译:头发细胞机电机会发生在几十微秒内,涉及少数皮涅顿的力,并且由纳米级分子构象变化介导。当涉及该过程中涉及的蛋白质被识别并且它们的高分辨率结构可用时,使用多种工具用于探索其“单分子反应”的力。光学镊子和原子力显微镜提供精致的力量和延长分辨率,但不能达到高频听觉刺激的高负荷率。分子动力学(MD)模拟可以达到这些快速时间尺度,并且还提供蛋白质力学底层的分子事件的独特视图,但必须通过实验验证其预测。因此,模拟和实验的组合可能适合研究听力的分子力学。这里我审查了MD模拟的基础知识和用于在硅中施加力和研究蛋白质力学的不同方法。尖端链路蛋白的模拟用于说明该方法的优点和限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号