【24h】

Multilayered Ceramic Constructs Created by EPD

机译:EPD创建的多层陶瓷构建体

获取原文

摘要

Zirconia-based ceramics have gained considerable interest for several applications (e.g. solid electrolytes in fuel cells and in oxygen sensors, thermal barrier coatings and biomaterials for dental and orthopaedic applications) due to their high mechanical strength, improved fracture toughness and easy affordability. Zirconia occurs in three crystal modifications at low-pressure conditions: monoclinic, tetragonal and cubic. The monoclinic phase is the natural room temperature stable phase, while the tetragonal and the cubic phase can be stabilized at room temperature by doping with the right amount of some oxide dopants (e.g. CaO, MgO, CeO_2 and Y_2O_3). The stabilization of the tetragonal phase results in a remarkable increase in fracture toughness, whereas the stabilization of the cubic phase results in an increase of the ionic conductivity to values significantly higher than for other ceramics. In order to optimize the properties of the final ceramic by combining the high fracture toughness of the tetragonal phase of zirconia together with the high ionic conductivity of its cubic phase, we established an EPD layering process with nanometric sized powders of TZP with different mol percentages of yttrium oxide (3 % and 8 %) and produced multilayers of alternating tetragonal and cubic phases with a clearly defined interface. The crack propagation through this interface was studied by means of Vickers indentation.
机译:由于其高机械强度,改善断裂韧性和易于负担性,氧化锆陶瓷对几种应用(例如,燃料电池中的固体电解质,牙齿和骨科应用中的氧气传感器,热障涂层和生物材料)产生了相当大的兴趣。氧化锆在低压条件下发生三种晶体修饰:单斜透明度,四方和立方体。单斜相是天然的室温稳定相,而四边形和立方相可以通过掺杂掺杂的一些氧化物掺杂剂(例如CaO,MgO,CeO_2和Y_2O_3)在室温下稳定。四边形相的稳定导致断裂韧性显着增加,而立方相的稳定导致离子电导率的增加,以显着高于其他陶瓷的值。为了通过将氧化锆的四方相的高裂缝韧性与其立方相的高离子电导率相结合来优化最终陶瓷的性质,我们建立了具有不同摩尔百分比的TZP的纳米尺寸粉末的EPD分层过程氧化钇(3%和8%)并产生具有明确定义的界面的交替四方和立方相的多层。通过该界面进行裂缝传播通过维氏缩进来研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号