首页> 外文会议>ACS National Meeting Exhibition >EXCITON DISSOCIATION AND PLASMON INDUCED HOT ELECTRON TRANSFER IN SEMICONDUCTOR/METAL QUANTUM ROD HETEROSTRUCTURES
【24h】

EXCITON DISSOCIATION AND PLASMON INDUCED HOT ELECTRON TRANSFER IN SEMICONDUCTOR/METAL QUANTUM ROD HETEROSTRUCTURES

机译:激子解离和等离子体诱导半导体/金属量子棒异质结构中的热电子转移

获取原文

摘要

Quantum confined semiconductor nanocrystals (OD quantum dots, 1D quantum rods and 2D quantum platlets) have been intensively investigated as light harvesting and charge separation materials for photovoltaic and photocatalytic applications. The efficiency of these semiconductor nanocrystal-based devices depends on many fundamental processes, including light harvesting, carrier relaxation, exciton localization and transport, charge separation and charge recombination. The competition between these processes determines the overall solar energy conversion (solar to electricity or fuel) efficiency. Semiconductor nano-heterostructures, combining two or more material components, offer unique opportunities to control their charge separation properties by tailoring their compositions, dimensions and spatial arrangement. Further integration of catalysts (heterogeneous or homogeneous) to these materials form multifunctional nano-heterostructures. Using OD, 1D and 2D CdSe/CdS/Pt heterostructures as model systems, we directly probe the above-mentioned fundamental exciton and carrier processes by transient absorption and time-resolved fluorescence spectroscopy. We are examining how to control these fundamental processes through the design of heterostructures to achieve long-lived charge separation and efficient H2 generation. In this talk, we will discuss mechanism of 1D exciton transport and dissociation in nanorods, and key factors limiting H2 generation efficiency in CdSe/CdS/Pt nanorod heterostructures.
机译:量子被狭窄的半导体纳米晶体(OD量子点,1D量子棒和2D量子普拉特)被强烈地研究了光伏和光催化应用的光收集和电荷分离材料。这些半导体纳米晶体基器件的效率取决于许多基本过程,包括光收集,载体松弛,激子定位和运输,电荷分离和电荷重组。这些过程之间的竞争决定了整体太阳能转换(太阳能电力或燃料)效率。半导体纳米异质结构,组合两种或更多种材料部件,提供独特的机会来通过定制它们的组成,尺寸和空间布置来控制其电荷分离性能。进一步将催化剂(非均相或均匀)与这些材料相结合,形成多官能纳米异质结构。使用OD,1D和2D CDSE / CDS / PT异质结构作为模型系统,我们通过瞬态吸收和时间分辨荧光光谱直接探测上述基本激子和载体过程。我们正在研究如何通过设计异性结构来控制这些基本流程,以实现长期的电荷分离和高效的H2生成。在这次谈判中,我们将讨论纳米棒的1D激子输送和解离机制,并限制CDSE / Cds / Pt纳米棒异质结构中H2生成效率的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号