首页> 外文会议>ACS National Meeting Exhibition >2D METAL CHALCOGENIDE AND METAL LAYERED DOUBLE HYDROXIDE (LDH) MATERIALS AND THEIR HETEROSTRUCTURES FOR ELECTROCATALYSIS AND DEVICE APPLICATIONS
【24h】

2D METAL CHALCOGENIDE AND METAL LAYERED DOUBLE HYDROXIDE (LDH) MATERIALS AND THEIR HETEROSTRUCTURES FOR ELECTROCATALYSIS AND DEVICE APPLICATIONS

机译:2D金属硫属化物和金属层状双氢氧化物(LDH)材料及其用于电闭合和装置应用的异质结构

获取原文

摘要

For efficient and practical photoelectrochemical solar energy conversion, such as solar water splitting, we need inexpensive electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) with catalytic performance rivaling that of the noble metal catalysts. We have discovered that chemical exfoliation of layered MX2 nanostructures and the simultaneous conversion of the as-synthesized MX2 material from its semiconducting 2H polymorph to the metallic 1T polymorph, grants greatly enhanced electrocatalytic activity for HER. The resulting 1T-MoS2 and 1T-WS2 nanosheets exhibit dramatically enhanced HER electrocatalytic performance as compared to their corresponding 2H polymorphs. Structural characterization and electrochemical studies confirm that the nanosheets of the metallic M0X2 polymorph exhibit facile electrode kinetics, low-loss electrical transport, and possess a proliferated density of catalytically active sites. These distinct and previously unexploited features of 1T-MX2 make these metallic nanosheets highly competitive earth-abundant HER catalysts. Furthermore, we have coupled electrocatalytic 1T-MoS2 to a p-type silicon photoelectrode to enable hydrogen evolution driven by solar light. Due to the excellent HER activity of 1T-MoS2 and the high-quality catalyst-semiconductor interface enabled by the direct CVD growth of MoS2 on silicon (followed by chemical exfoliation), a much higher photocurrent density for hydrogen evolution was achieved as compared to 2H-MoS2 on silicon. Photocurrents up to 17.6 mA/cm~2 at 0 V vs reversible hydrogen electrode (RHE) were achieved under simulated 1 sun irradiation, and good stability was demonstrated over repeated scans and long-time operation. Electrochemical impedance spectroscopy revealed low charge transfer resistances at the semiconductor/catalyst and catalyst/electrolyte interfaces, and surface photoresponse measurements also demonstrated slow carrier recombination dynamics and consequently efficient charge carrier separation, providing further evidences for the superior performance. Our results suggest that chemically exfoliated 1T-MoS2/Si heterostructures are promising earth-abundant alternatives to photocathodes based on noble metal catalysts for solar-driven hydrogen production. We have also discovered that low temperature CVD growth using MoCls and S precursors results in conformal deposition of amorphous MoS_xCl_y HER catalyst that show high electrocatalytic activity and high PEC hydrogen generation performance. These results demonstrate chemically exfoliated 1T-MoS2 and amorphous MoS_xCl_ySi heterostructures are promising earth-abundant alternatives to photocathodes based on noble metal catalysts for solar-driven hydrogen production.
机译:为高效,实用的光电化学太阳能转换,如太阳能水分解,我们需要为析氢反应廉价电催化剂(HER)和析氧反应(OER)具有催化性能相媲美,所述贵金属催化剂的。我们已经发现,层状MX2纳米结构的化学去角质并从其半导体2H多晶型物在金属1T多晶型物所合成MX2材料的同时转化,拨款大大增强的电催化活性为HER。相比于它们相应的多晶型2H所得1T-MoS 2和1T-WS2纳米片表现出显着增强HER电催化性能。结构表征和电化学研究证实,金属M0X2多晶型物表现出容易电极动力学的纳米片,低损耗电传输,并且具有催化活性位点的增殖的密度。 1T-MX2的这些独特的和未开发的特点使这些金属纳米片竞争激烈的地球上资源丰富HER催化剂。此外,我们已经耦合电1T-二硫化钼到一个p型硅光电极,以使由太阳能驱动的光的析氢。由于1T-的MoS 2的优异的HER活性和使高品质的催化剂 - 半导体界面通过在硅的MoS 2的直接CVD生长(之后进行化学剥离),达到了析氢高得多的光电流密度相比,2H -MoS2硅。光电流达到17.6毫安/厘米〜2在0 V相对于可逆氢电极(RHE)模拟1次太阳照射下被实现的,和良好的稳定性被证明在重复的扫描和长时间操作。电化学阻抗谱显示低的电荷转移电阻在半导体/催化剂和催化剂/电解质界面,以及表面光响应测量也表明慢载流子复合动力学,并因此有效的电荷载体的分离,为优越的性能提供了进一步的证据。我们的研究结果表明,化学剥离1T-二硫化钼/硅异质结构是有希望的地球上资源丰富的替代基于用于太阳能驱动的制氢贵金属催化剂的光电阴极。我们已在使用MoCls和S前体的结果低温CVD生长在无定形MoS_xCl_y HER催化剂显示高的电催化活性和高的PEC氢气产生性能的共形沉积还发现。这些结果证明化学剥离1T-MoS 2和非晶MoS_xCl_ySi异质结构是有希望的地球上资源丰富的替代基于用于太阳能驱动的制氢贵金属催化剂的光电阴极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号