首页> 外文会议>Society of Petroleum Engineers Annual Technical Conference >How to Improve our Understanding of Gas and Oil Production Mechanisms
【24h】

How to Improve our Understanding of Gas and Oil Production Mechanisms

机译:如何提高我们对天然气和石油生产机制的理解

获取原文

摘要

Three phase oil,gas,and water flow in liquid-rich shale plays is investigated in this paper,using a state-of-the-art technique of dividing shale matrix into different sub-media.Shale reservoirs always present numerous challenges to modeling and understanding,from unintuitive,heterogeneous,and difficult to characterize rock properties,to limited understanding of the governing flow equations,lack of fundamental knowledge on related desorption mechanisms,and nearly impermeable formations with pores on the order of magnitude as the mean free path of gas molecules.This work proposes a partitioning scheme to divide porous media in shale into three different sub-media(porosity systems)with distinctive characteristics:inorganic matter and kerogen(in the shale matrix),along with fracture network(natural or hydraulic).The current model gives us the capability of better analyzing the complex nature of mass transfer in shale.Relative permeabilities in our model are accounted for by employing the functions specifically presented for shale reservoirs.Our model can also handle various flow and storage mecha-nisms corresponding with shales such as molecule/wall interactions and slippage of the gas phase, multicomponent desorption,and capillarities.Simulation results show that hydrocarbon production from shale reservoirs exhibits complicated dynamics that are controlled by a number of different factors. Because of very high capillary pressure in shale,water is observed to imbibe into the water-wet inorganic matter during the late production period.On the contrary,mass flow in the oil-wet kerogen is mostly limited to two-phase oil and gas flow.Although kerogen is considered to be a rich source of hydrocarbon, relatively high capillary pressure and very low rock permeability hinder oil production in organic-rich shale.We might be able to address such problems by employing an appropriate production enhancement technique compatible with the ultra-tight nature of such reservoirs.
机译:在本文中研究了三相油,气体和水流,采用最先进的技术划分页岩矩阵分为不同的子媒体技术.Shale水库总是对建模和建模的挑战始终呈现许多挑战理解,从无关,异质,难以表征岩石属性,以有限地了解控制流动方程,缺乏关于相关解吸机制的基本知识,以及毛孔的几乎不可渗透的孔,作为气体的平均自由路径分子提出了一种分配方案,将页岩中的多孔介质分成三种不同的子介质(孔隙率系统),具有独特的特征:无机物质和角质原(在页岩基质中),以及裂缝网络(天然或液压)。目前的模型为我们提供了更好地分析页岩中大规模转移的复杂性质的能力。我们模型中的渗透率是通过雇用F的专门针对页岩储层专门呈现的机制。我们的模型还可以处理与Shales(如分子/壁相互作用和气相),多组分解吸和毛细管的滑度相对应的各种流动和储存机制。仿效结果表明,来自页岩储层的碳氢化合物生产表现出由许多不同因素控制的复杂动态。由于页岩中的毛细管压力非常高,在晚期生产期间观察到水中的水进入水湿无机物质。相反,油湿的角膜原中的质量流量大部分限于两相油和气体流动虽然Kerogen被认为是富含烃的丰富来源,毛细管压力相对较高,岩石渗透率非常低的岩石渗透性在有机富有的Shale中。我们可能能够通过采用与超超兼容的适当的生产增强技术来解决这些问题 - 这种水库的眼睛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号