首页> 外文会议>American Gear Manufacturers Association Fall Technical Meeting >Innovative Induction Hardening Process with Preheating for Improved Fatigue Performance of Gear Component
【24h】

Innovative Induction Hardening Process with Preheating for Improved Fatigue Performance of Gear Component

机译:具有预热的创新感应加固过程,提高齿轮部件的疲劳性能

获取原文

摘要

Contact fatigue and bending fatigue are two main failure modes of steel gears. Surface pitting and spalling are two common contact fatigue failures, which are due to the alternating subsurface shear stresses from the contact load between two gear mates. When a gear is in service under cyclic load, concentrated bending stresses exist at the root fillet, which is the main driver of bending fatigue failures. Heat treatment is required to increase the hardness and strength of gears to meet the required contact and bending fatigue performance. Induction hardening is becoming more popular due to its process consistency, reduced energy consumption, clean environment, and improved product quality. It is well known that an induction hardening process of steel gears can generate compressive residual stresses in the hardened case. Compressive residual stresses in the hardened case of tooth flank benefit the contact fatigue performance, and residual compression in the root fillet benefits the bending fatigue. Due to the complex gear geometry, the residual stress distribution in the hardened case is not uniform, and different induction hardening process can lead to different residual stress pattern and significant variation of fatigue performance. In this paper, an innovative approach is proposed to flexibly control the magnitude of residual stress in the regions of root fillet and tooth flank by using the concept of preheating prior to induction hardening. Using an external spur gear made of AISI 4340 as an example, this concept of innovative process is demonstrated with finite element modeling, using commercial software DANTE.
机译:接触疲劳和弯曲疲劳是钢齿轮的两个主要故障模式。表面点蚀和剥落是两个常见的接触疲劳故障,这是由于两个齿轮位之间的接触载荷的交替的地下剪切应力。当在循环负载下齿轮在循环负载下,根圆角存在浓缩弯曲应力,这是弯曲疲劳失效的主要驱动器。需要热处理来提高齿轮的硬度和强度,以满足所需的接触和弯曲疲劳性能。由于其过程一致性,降低能耗,清洁环境和提高产品质量,感应硬化变得越来越受欢迎。众所周知,钢齿轮的感应硬化过程可以在硬质壳体中产生压缩残余应力。牙齿硬质壳体中的压缩残余应力有益于接触疲劳性能,并在根圆角中的残余压缩有益于弯曲疲劳。由于复杂的齿轮几何形状,硬质壳体中的残余应力分布不均匀,并且不同的感应硬化过程可以导致不同的残余应力模式和疲劳性能的显着变化。本文提出了一种创新的方法,以通过使用在感应硬化之前使用预热的概念来灵活地控制根圆角和牙齿侧翼区域中的残余应力的大小。用AISI 4340制成的外部正常齿轮作为一个例子,使用商业软件Dante使用有限元建模来展示创新过程的这种概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号