首页> 外文会议>AMOS 2013 >Fast Gravitational Field Model using Adaptive Orthogonal Finite Element Approximation
【24h】

Fast Gravitational Field Model using Adaptive Orthogonal Finite Element Approximation

机译:快速引力场模型使用自适应正交有限元近似

获取原文

摘要

Recent research has addressed the increasing computational challenge that the current state of the art global gravity expansions involve tens of thousands of terms in a theoretically infinite order expansion (some spherical harmonic gravity models extend to degree and order 200 with over 30,000 terms). As global gravity models become more detailed and expensive, and since, acceleration must be computed at numerous local points to generate high precision orbits), and finally, with the advent of >20,000 objects whose orbits must be propagated for Space Situational Awareness, the expense of gravity computation has emerged as a vitally important computational challenge. In this paper we consider orthogonal approximation methods to establish an FEM high accuracy global gravity field representation. The FEM model replaces the global spherical harmonic series with a family of locally precise orthogonal polynomial approximations for efficient computation. Our preliminary results showed that CPU time to compute the state of the art (degree and order 200) spherical harmonic gravity is reduced by 4 to 5 orders of magnitude while maintaining > 9 digits of accuracy. Most of the speedup is due to adopting the orthogonal FEM approach, but a radial adaptation method to modify the approximation degree is introduced that results in an additional order of magnitude speedup. The Adaptive Orthogonal Finite Element Gravity Model (AOFEGM) has wide applicability to establish a new generation of efficient trajectory propagation algorithms. For example, when used in conjunction with the orthogonal Finite Element Model (FEM) gravity approximations discussed herein, the highly parallelizable Chebyshev-Picard path approximation enables truly revolutionary speedups in orbit propagation without accuracy loss.
机译:最近的研究已经解决日益增加的计算挑战的艺术全球重力扩张的当前状态,在理论上无限阶展开(有些球谐引力模型扩展到度和订单200超过30,000项)涉及的术语数以万计。随着全球重力场模型变得更加详细和昂贵,因为,加速度必须在许多地方点来计算,生成高精度的轨道),最后,用> 20000对象,它们的轨道必须传播的太空态势感知,消费的来临重力的计算已经成为一个非常重要的计算挑战。在本文中,我们考虑正交近似方法建立有限元高精度的全球重力场表示。有限元模型取代了全球球谐级数与家人高效的计算精确的局部正交多项式近似。我们的初步结果表明,CPU时间来计算球谐重力由4至5个数量级的减少,同时维持>精度的9个数字的技术(度和顺序200)的状态。大部分的加速是由于采用正交FEM的方法,但被引入一个径向适应的方法来修改接近程度,在大小加速的附加顺序的结果。自适应正交有限元引力模型(AOFEGM)具有广泛的适用性,建立新的代的有效轨迹传播算法。举例来说,结合本文中所讨论的正交有限元模型(FEM)重力近似值一起使用时,所述高度并行切比雪夫-皮卡德路径近似使得能够在轨道传播真正革命性的加速比没有精度损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号