首页> 外文会议>SPE Reservoir Characterisation and Simulation Conference >3-D Numerical Investigation of Subsurface Flow in Anisotropic Porous Media using Multipoint Flux Approximation Method
【24h】

3-D Numerical Investigation of Subsurface Flow in Anisotropic Porous Media using Multipoint Flux Approximation Method

机译:多点通量近似法的各向异性多孔介质中次数流动的3-D数值研究

获取原文

摘要

Anisotropy of hydraulic properties of subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that they undergo during the longer geologic time scale. With respect to petroleum reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on the pressure gradient direction but also on the principal directions of anisotropy. Furthermore, in complex systems involving the flow of multiphase fluids in which the gravity and the capillarity play an important role, anisotropy can also have important influences. Therefore, there has been great deal of motivation to consider anisotropy when solving the governing conservation laws numerically. Unfortunately, the two-point flux approximation of finite difference approach is not capable of handling full tensor permeability fields. Lately, however, it has been possible to adapt the multipoint flux approximation that can handle anisotropy to the framework of finite difference schemes. In multipoint flux approximation method, the stencil of approximation is more involved, i.e., it requires the involvement of 9-point stencil for the 2-D model and 27-point stencil for the 3-D model. This is apparently challenging and cumbersome when making the global system of equations. In this work, we apply the equation-type approach, which is the experimenting pressure field approach that enables the solution of the global problem breaks into the solution of multitude of local problems that significantly reduce the complexity without affecting the accuracy of numerical solution. This approach also leads in reducing the computational cost during the simulation. We have applied this technique to a variety of anisotropy scenarios of 3-D subsurface flow problems and the numerical results demonstrate that the experimenting pressure field technique fits very well with the multipoint flux approximation method. Furthermore, the numerical results explicitly emphasize that anisotropy could not be ignored for the proper model of subsurface flow.
机译:地下地质形成的液压特性的各向异性是由于它们在地质时间较长的不同地质过程的结果而建立的重要特征。关于石油储层,在许多情况下,各向异性在决定不再依赖于压力梯度方向,而且在不再取决于压力梯度方向,而且在各向异性的主要方向上起着重要作用。此外,在涉及多相流体流动的复杂系统中,其中重力和毛细血管发挥着重要作用,各向异性也可以具有重要的影响。因此,在数值上解决管理保护法时,考虑各向异性存在很大的动机。不幸的是,有限差分方法的两点助焊剂近似不能处理完全张力渗透性场。然而,最近,已经可以调整可以处理各向异性的多点助焊剂近似,以便对有限差分方案的框架处理各向异性。在多点磁通近似方法中,近似的模版更涉及,即,它需要在3-D模型中的2-D模型和27点模板中的9点模板参与。在制作全球方程式的系统时,这显然是挑战和繁琐的。在这项工作中,我们应用了方程式方法,即实现了全局问题解决方案中的实验压力场方法,该方法可以破坏众多局部问题的解决方案,这显着降低了复杂性而不会影响数值解决方案的准确性。这种方法还导致在模拟过程中降低计算成本。我们已经将该技术应用于3-D次表面流量问题的各个视角相关方案,数值结果表明,使用多点通量近似方法,实验压力场技术非常适合。此外,数值结果明确强调,对于地下流量的适当模型,无法忽视各向异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号