首页> 外文会议>SAE World Congress and Exhibition >System Design and Control Strategy for a Battery/Supercapacitor Electric Bus with an Integrated Fast Charger/Bus Stop Station
【24h】

System Design and Control Strategy for a Battery/Supercapacitor Electric Bus with an Integrated Fast Charger/Bus Stop Station

机译:具有集成快速充电器/巴士站的电池/超级电池电动总线的系统设计和控制策略

获取原文

摘要

The purposes of this study are to 1) select a suitable size of dual energy sources, 2) develop a dynamic model for a battery/supercapacitor (SC) electric bus with an integrated fast charger/bus stop station, and 3) establish control strategies among the fast charger, batteries, and the SC module. For 1), a global search method was used to locate a suitable-sized battery set and SCs under a preset cost function and basic properties. The cost ratio (CR) was calculated to maximize the energy storage capacity. For 2), 10 subsystems of the electric bus, including the driver maneuver, traction motor, the lithium battery module, the SCs, the onboard DC/DC converter, the longitudinal vehicle dynamics, accessories, and the transmission were constructed. For the fast charger/bus stop station, an AC/DC inverter was modeled. All modulized subsystems were then integrated into the vehicle/station simulator. For 3), the 10-mode control strategy properly conducts energy management using rule-based control laws, which are functions of vehicle speed, state-of charges (SOCs) of dual energy sources, and driving conditions. The control output section delivers the commands to the subsystem controllers, relays, and converters/inverters. The fast charger/bus stop station charges batteries and SCs when proper commands were sent by the vehicle control unit (VCU). All simulation results demonstrate that the optimized sizing of dual energy sources, electric bus and charger dynamics, and VCU control strategies were successfully completed. The feasibility study and specification design of Taiwan's E-Bus with a fast-charge station will be conducted through this study in the near future.
机译:本研究的目的是1)选择合适的双能源尺寸,2)用集成的快速充电器/总线站和3)为电池/超级电容器(SC)电动总线进行动态模型,以及3)建立控制策略在快速充电器,电池和SC模块中。对于1),使用全局搜索方法在预设的成本函数和基本属性下定位合适的电池组和SC。计算成本比(CR)以最大化能量储存能力。对于2),构建了10个电动总线的10个子系统,包括驱动器机动,牵引电机,锂电池模块,SCS,车载DC / DC转换器,纵向车辆动力学,附件和传输。对于快速充电器/总线停车站,建模AC / DC逆变器。然后将所有调制的子系统集成到车辆/站模拟器中。对于3),10模式控制策略使用基于规则的控制定律正确进行能量管理,这些控制法是车速,双能源的电荷(SOC)以及驾驶条件的功能。控制输出部分将命令传送到子系统控制器,继电器和转换器/逆变器。当车辆控制单元(VCU)发送适当的命令时,快速充电器/巴士停车站收取电池和SCS。所有仿真结果表明,成功完成了双能源,电动总线和充电器动力学和VCU控制策略的优化尺寸。台湾电子巴士的可行性研究和规范设计与快速电路站将在不久的将来进行这项研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号