首页> 外文会议>SAE World Congress and Exhibition >Physics-Based Exhaust Pressure and Temperature Estimation for Low Pressure EGR Control in Turbocharged Gasoline Engines
【24h】

Physics-Based Exhaust Pressure and Temperature Estimation for Low Pressure EGR Control in Turbocharged Gasoline Engines

机译:基于物理的排气压力和温度估计在涡轮增压汽油发动机中低压EGR控制

获取原文

摘要

Low pressure (LP) and cooled EGR systems are capable of increasing fuel efficiency of turbocharged gasoline engines, however they introduce control challenges. Accurate exhaust pressure modeling is of particular importance for real-time feedforward control of these EGR systems since they operate under low pressure differentials. To provide a solution that does not depend on physical sensors in the exhaust and also does not require extensive calibration, a coupled temperature and pressure physics-based model is proposed. The exhaust pipe is split into two different lumped sections based on flow conditions in order to calculate turbine-outlet pressure, which is the driving force for LP-EGR. The temperature model uses the turbine-outlet temperature as an input, which is known through existing engine control models, to determine heat transfer losses through the exhaust. Temperature output is used in the pressure model to estimate pressure losses in the two sections of the pipe starting from post-catalyst (ambient) conditions. Experimental data is used to calibrate a total of six parameters in the pressure and steady-state temperature models. Transient experiments are utilized to calibrate the dynamic behavior of the temperature model, which is captured by a low-pass filter to reduce computational effort. A turbocharged gasoline engine, equipped with a LP-EGR loop, is used for real-time transient validation of the coupled model. The newly presented model demonstrates an absolute pressure prediction error of less than 1 kPa with mean error of 0.15 kPa and standard deviation of 0.13 kPa over the validation range.
机译:低压(LP)和冷却的EGR系统能够提高涡轮增压汽油发动机的燃料效率,但它们引入了控制挑战。精确的排气压力建模对于这些EGR系统的实时前馈控制是特别重要的,因为它们在低压差分下运行。为了提供不依赖于排气中的物理传感器的解决方案,并且还不需要广泛的校准,提出了一种耦合温度和基于压力物理的模型。排气管基于流动条件将排气管分成两个不同的集成部分,以便计算涡轮机出口压力,这是LP-EGR的驱动力。温度模型使用涡轮机出口温度作为输入,通过现有发动机控制模型已知,以确定通过排气的传热损耗。在压力模型中使用温度输出来估计从催化剂后(环境)条件的管道两部分中的压力损失。实验数据用于校准压力和稳态温度模型中的总共六个参数。瞬态实验用于校准温度模型的动态行为,该温度模型被低通滤波器捕获以减少计算工作。配备有LP-EGR环路的涡轮增压汽油发动机用于耦合模型的实时瞬态验证。新呈现的模型演示了小于1kPa的绝对压力预测误差,其平均误差为0.15kPa,并且在验证范围内的标准偏差为0.13kPa。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号